
Proceedings of the

17th European Lisp Symposium
Vienna, Austria

May 6 — 7, 2024

ISBN-13: 978-2-9557474-8-3
ISSN: 2677-3465

Preface

Message from the Program Chair

The 17th European Lisp Symposium was held in Vienna, in the beautiful settings of the Sky
Lounge, on top of a building near the Danube canal with a terrace with a 360-degree panorama
of the city.

The conference attracted an audience far beyond Europe, including Japan, India and the
USA. The ELS series in fact is carrying over a tradition of conferences on Lisp that started in
1980 with the first ACM Conference on Lisp and Functional Programming. I was there and
listened to John McCarthy who gave a keynote. He had reasons to be pleased for the survival
of Lisp for 21 years and mentioned the fact that practical applications could be written in Lisp
like Multics Emacs. And Emacs today is in reverse where Lisp still survives as the language for
building extensions. McCarthy thought that the language had good prospects with the creation
of a variety of programming libraries and the potential for checks of program correctness. Lisp
was in fact conceived by McCarthy as a language with a mathematical base to be used to ex-
press “proofs in the artificial language as short as informal proofs”, as he wrote in the famous
proposal for the Darthmouth Workshop in 1956, where the discipline of Artificial Intelligence
was founded. Indeed he “proposed to study the relation of language to intelligence”, which
sounds quite foresighted in this period when Large Language Models dominate the scene.

Similar lively discussions were held among the participants in Vienna about why the oppor-
tunities that McCarthy was seeing have not materialized. One argument was indeed about the
importance of a wide availability of libraries, which for example have attracted programmers
to Python. The difference with Lisp was that all libraries had to be written in the language itself,

ELS 2024 ii

requiring too much effort, while in Python one could easily write wrappers, even automatically
with tools like SWIG.

Another big chance for Lisp was as an embedded extension language, like in Emacs or Au-
tocad. Guile was an attempt in that direction for general use within the GNU project, but un-
fortunately the big opportunity of a scripting language for the Web was stolen by Java and
JavaScript.

Notwithstanding these setbacks, the participation in Vienna showed that the language still
attracts programmers, who dedicate some of their extra time to developments and experimen-
tation.

The keynote by Markus Triska argued strongly that a symbolic programming languages like
Lisp or Prolog is essential for AI applications that need to be deployed within public adminis-
trations. He gave as example the government service Grants4Companies, which his team has
built to help finding and verifying the elibility of a company to apply for grants.

Stavros Macrakis gave an insightful keynote about hype cycles full of enjoyable anectodes.
He debunked several myths: for example he mentioned symbolic mathemathics like Macsyma.
Symbolic algebra is an attractive application for AI, but nevertheless it has limitations, since
for example algebraic solutions are only available to polynomial equations up to the fourth de-
gree: beyond that one must use numerical approximate solutions. The other arguments that the
symbolic solutions provide valuable insights is also questionable, since the formulas become
so complex that they are hard to interpret. In the meantime hardware progress has made solu-
tions more practical, even NP complete problems can be solved with a fairly large number of
variables.

Julian Padget in his keynote discussed the issue of bias, that arises in algorithmic models
built on data by means of machine learning techniques. He gave a critical account of how
bias is defined even in certain official or standardisation documents. Bias is inherent in data
and essential to the ability to make decision, therefore it cannot be removed: one can only
strive to reduce the presence of unwanted bias. But this is not a straightforward direction,
because removing a certain bias might introduce some other bias. Hence fighting bias should
be considered as a continous process to be part of the system life cycle of a software system
similarly to maintenance or debugging.

Overall the ELS 2024 was a lively venue with interesting presentations as well as discussions
with the participants.

I wish to thank Didier Verna, for his efforts in setting up the conference and helping in
chairing it, to Philipp Marek and the local organizers for the perfect arrangements and to the
sponsors: the Federal Ministro of Finance of Austria and SISCOG.

Message from the Local Chair

I welcome you all to another round of ELS - this time in the city of Vienna, where historical
events have taken place, and this here will be no less important.

Amidst the espionage history embedded in these very streets, let us inspect our variable
bindings and bind our forms together, so that the whole of our works might not just be printed,
recycled, and garbage collected, but may be compiled to add another level of precious under-
standings to the boring concepts we get asked by better-sleeping people: “You know computers,
can you fix my microwave?”

But putting the jokes aside – it is in these few hours, shortly before ELS is about to begin,
that I already gladly look back at the great help I had organizing it; and I know that we all (the
local, the lexical, and the dynamically bound) organizers hope you all enjoyed the show and
will look back with comfort and pleasure at the two days we spent on the 12th level floor of the
Sky Lounge.

Looking forward to seeing you again next year, wherever we might be!

ELS 2024 iii

Organization

Symposium Organizer

• Didier Verna, EPITA Research Laboratory, France

Programme Chair

• Giuseppe Attardi, University of Pisa, Italy

Local Chair

• Philipp Marek, BRZ, Vienna Austria

Virtualization Team
Georgiy Tugai
Yukari Hafner

Programme Committee

Ambrose Bonnaire-Sergeant Untypable LLC
Frédéric Peschanski LIP6, Sorbonne Université, Paris, France
Jay McCarthy UMass Lowell
Jim Newton EPITA Research Laboratory, France
Kai Selgrad OTH Regensburg
Mark Evenson not.org
Michael Raskin LaBRI/CNRS UMR 5800, University of Bordeaux, France
Robert Smith HRL Laboratories LLC
Robert P. Goldman SIFT LLC
Stefan Monnier Université de Montréal, Québec

ELS 2024 iv

Sponsors

We gratefully acknowledge the support given to the 17thth European Lisp Symposium by the
following sponsors:

BMF
Bundesministerium
Finanzen
Austria
www.bmf.gv.at/

SISCOG
Campo Grande, 378 – 3
1700–097 Lisboa
Portugal
www.siscog.pt

ELS 2024 v

www.bmf.gv.at/
www.siscog.pt

Monday 6 May 2024

08:30–09:45 Registration, Badges, T-Shirts, Meet and Greet
09:45–10:00 Welcome Message
10:00–11:00 Keynote Markus Triska

The Need for Symbolic AI Programming Languages in the Public
Sector

11:00–11:30 Coffee break
11:30–12:30 Keynote Stavros Macrakis

Is the Hype Cycle Real?
12:30–14:00 Lunch
14:00–14:30 Research Daphne Preston-Kendal

Paper R7RS Large Status and Progress
14:30–15:00 Demo Andrew Sengul

The Medley Interlisp Revival
15:00–15:30 Demo Anders Hoff

Lisp Query Notation – A DSL for Data Processing
15:30–16:00 Coffee break
16:00–16:30 Research Philipp Marek, Bjoern Lellmann, Markus Triska

Paper Grants4Companies: The Common Lisp PoC
16:30–17:00 Demo Marco Heisig

An Introduction to Array Programming in Petalisp
17:00–17:30 Lightning Talks

Tuesday 7 May 2024

08:30–09:30 Registration, Badges, T-Shirts, Meet and Greet
09:30–10:30 Keynote Julian Padget

Bias is a bug; but not as we know it!
10:30–11:00 Coffee break
11:00–11:30 Research Gábor Melis

Paper Adaptive Hashing
11:30–12:00 Research Arthur Evensen

Paper Period Information Extraction: A DSL Solution to a Domain
Problem

12:00–12:30 Demo Didier Verna
The Quickref Cohort

12:30–14:00 Lunch
14:00–14:30 Research Shubhamkar Ayare

Paper py4cl2-cffi: Using CPython’s C API to Call Python Callables from
Common Lisp

14:30–15:00 Demo Eitaro Fukamachi
Qlot, a Project-Local Library Installer

15:00–15:30 Demo Robert Mayer, Thomas Östreicher
Murmuel and JMurmel

15:30–16:00 Coffee break
16:00–16:30 Lightning Talks

ELS 2024 vi

Contents

Preface ii
Message from the Program Chair . ii
Message from the Local Chair . iii

Organization iv
Symposium Organizer . iv
Programme Chair . iv
Local Chair . iv
Virtualization Team . iv
Programme Committee . iv

Sponsors v

Program overview vi

Invited Contributions 1
Bias is a bug; but not as we know it! – Julian Padget . 1
Is the hype cycle real? – Stavros Macrakis . 1
The Need for Symbolic AI Programming Languages in the Public Sector – Markus Triska 1

Monday, 24 April 2023 2
The Medley Interlisp Revival – Andrew Sengul . 3
Lisp Query Notation – A DSL for Data Processing – Anders Hoff 8
Grants4Companies: The Common Lisp PoC – Philipp Marek, Bjoern Lellmann, Markus

Triska . 12
An Introduction to Array Programming in Petalisp – Marco Heisig 18
Adaptive Hashing – Gábor Melis . 22

Tuesday, 25 April 2023 41
Period Information Extraction: A DSL Solution to a Domain Problem – Arthur Evensen 42
The Quickref Cohort – Didier Verna . 48
py4cl2-cffi: Using CPython’s C API to Call Python Callables from Common Lisp –

Shubhamkar Ayare . 52
Qlot, a Project-Local Library Installer – Eitaro Fukamachi 60
Murmel and JMurmel – Robert Mayer, Thomas Östreicher 65

ELS 2024 vii

Invited Contributions

Bias is a bug; but not as we know it!

Julian Padget, University of Bath, UK
Algorithmic model construction is now accepted technology. Using some data to train a

model is commonplace and machine learning has percolated down to the first-year CS curricu-
lum. Testing such models is quite difficult, because conventional approaches learned from con-
ventional programming provide only limited coverage. Furthermore, metrics offer big picture
performance but may disguise edge cases. One significant worry is that such systems exhibit
differential treatment of individuals or groups because the algorithm has identified an attribute
relationship in the data that does not align with the system’s business requirements. This is
typically referred to (wrongly!) as a ‘biased’ output. We start by examining the language of
bias in algorithmic models and argue that (unwanted) bias is a (latent) bug. However, this bug
typically has complex causes, as well as the possibility of morphing over time into bias that
does align with the requirements. In consequence, we will continue by exploring how consid-
eration of bias can be incorporated into the system life cycle and put forward some strategies
for thinking about bias-related debugging.

Is the hype cycle real?

Stavros Macrakis, Amazon OpenSearch, Cambridge, MA, USA
Some technologies have grown steadily and undramatically over the years; others have been

transient successes, or have been relegated to narrow application areas. How can we benefit
from the long-term perspective to understand what might happen with today’s most hyped
technologies?

The Need for Symbolic AI Programming Languages in the
Public Sector

Markus Triska, Austrian Federal Ministry of Finances
Rising expectations in public IT-services lead to increasing implementation complexity at

a time where many of the programmers who initially built these services retire. The cost and
complexity of building reliable e-government services also depend on the used programming
languages. We would greatly benefit from better technologies to create and maintain IT-services
that let us flexibly state and reason about laws and regulations on which administrations are
based. Our recent experiences in the department V/B/5 of the Austrian Federal Ministry of
Finance indicate that symbolic AI programming languages such as Lisp and Prolog are well
suited for this purpose. The e-government service Grants4Companies is a recent application
of such technologies in the public sector, and is made available to companies via the Austrian
Business Service Portal.

ELS 2024 1

Monday, 24 April 2023

ELS 2024 2

The Medley Interlisp Revival
Andrew Sengul

andrew@interlisp.org
Interlisp.org

Figure 1: A screenshot from Medley featuring compact graphical software applications.

ABSTRACT
TheMedley Interlisp revival is a project to restore Medley Interlisp
for use on modern computers. Interlisp began as a Lisp environ-
ment for researchers sponsored by DARPA, and after gaining dis-
play capabilities it was renamed Interlisp-D. Xerox spun out sales
and development of Interlisp-Dwith the “Medley” software release,
which eventually became the product name. Medley development
ended in the 1990s and was revived in 2021 by a team including
some of the original PARC developers.Their effort is aimed at both
preserving the Interlisp software created in the past and expanding
the scope of what these tools can do to further realize the promises
of interactive, graphically augmented development.

CCS CONCEPTS
• Software and its engineering → Open source model; Soft-
ware evolution; Maintaining software; Documentation; Software
reverse engineering; • Theory of computation → Interactive
computation; • Human-centered computing→ Interaction de-
sign theory, concepts and paradigms.

KEYWORDS
Lisp, Interlisp, GUI, interactive programming, software archaeol-
ogy, software restoration, education, nonprofit, FOSS

ACM Reference Format:
Andrew Sengul. 2024. The Medley Interlisp Revival. In Proceedings of the
17th European Lisp Symposium (ELS’24).ACM, New York, NY, USA, 5 pages.
https://doi.org/10.5281/zenodo.11090093

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.11090093

1 INTRODUCTION
Interlisp.org, a US non-profit organization, is working to resurrect
and restore the Medley Interlisp system and has made progress in
modernizing and enhancing it. Medley Interlisp was the last ver-
sion of the Interlisp system developed by Xerox Palo Alto Research
Center (PARC). Accomplishments thus far have included reducing
barriers to entry, making it easier to build versions for modern
computing platforms, the creation of an online Medley system us-
able through a web browser, and one-click installers for major op-
erating systems. The Medley software has been released under a
free open source, downloadable at https://interlisp.org.

The system’s original release came near the end of a fruitful pe-
riod for interactive software development stretching from the late
1960s through the early 1990s. In the mid-1980s, Xerox PARC ta-
pered off development of Medley and moved the project to Xerox
AI Systems (a Xerox subsidiary). In the late 1980s XAIS moved the
system to Envos, which closed shortly thereafter and led to a com-
pany called Venue acquiring the rights to Medley Interlisp. Circa
2018, Ron Kaplan andNick Briggs resurrectedMedley Interlisp and
began transporting it to modern computing platforms to support
work in natural language research.

In 2020, the Medley Project was formed with the goal of mod-
ernizing the Interlisp ecosystem, opening the way for present-day
developers to experience it on modern computing platforms like
Windows, MacOS and Linux. Interlisp.org was formed to organize
these efforts, provide versions of Medley Interlisp to interested
users and provide a repository for source code and documenta-
tion. Interlisp.org has been successful in this endeavor as Medley
Interlisp now runs on the indicated platforms as well as through a
browser-accessible online interface and onARMsystems. ADocker
container release is available for added portability. Interlisp.org
has also resurrected several applications including ROOMS, Note-
cards, LOOPS and others. It has assembled an online Zotero repos-
itory collecting Lisp documentation along with Interlisp papers,
books, and technical material. Selected source code is also avail-
able for contributed programs.

ELS 2024 3

ELS’24, May 6–7 2024, Vienna, Austria Andrew Sengul

2 THE PROJECT
Interlisp.org received the source code for Medley Interlisp and its
applications from Venue Corporation. Interlisp.org consists of a
group of volunteers – original developers, former users, comput-
ing historians interested in software preservation, and people in-
terested in software archaeology. This group has focused on:

• Modernizing Medley’s infrastructure and source code;
• Adapting the system to run on modern platforms;
• Reducing the barrier to entry for new users;
• Resurrecting and restoring Medley Interlisp applications of

historical interest; and
• Conducting outreach to potential users, students, software

historians, and others to foster better understanding of how
symbolic computing evolved.

Notable is Medley’s support for two Lisp dialects: Common Lisp
(CL) and Interlisp. These are implemented as compilers for the re-
spective dialects supporting interaction through a read-evaluate-
print loop, or REPL. While the functions in these dialects are im-
plemented in different ways their data structures are identical, so
numbers, symbols, linked lists and some other data types can be
shared between the two dialects. This makes it possible to create
blended applications in which data is passed between functions
written in either dialect.

2.1 Adaptation to Modern Platforms
Interlisp.org is engaged in restoring the Medley Interlisp ecosys-
tem, including tools, utilities, and applications, and provides pub-
lic versions of source and binary code for modern computing plat-
forms alongwith documentation. All of these artifacts are available
through Interlisp.org’s GitHub and Zotero repositories. The open
source version for modern computing platforms consists of:

• Maiko: the emulation software that implements the Interlisp
Virtual Machine;

• Medley: source and compiled versions of Medley Interlisp,
its tools and utilities, and selected applications;

• Installers for modern computing platforms: Windows 10+,
MacOS and Linux, including WSL and ARM; and

• https://online.interlisp.org: a browser-accessible online ver-
sion of Medley Interlisp.

Additionally, Interlisp.org provides public access to its Zotero
repository, which contains a collection of documentation for In-
terlisp and other Lisp dialects.

2.2 Reducing Barriers to Entry
Easy access to Medley Interlisp will help (re)introduce potential
users to Interlisp in a way that allows them to explore its features
while building their expertise. Since Interlisp was developed be-
fore current conventions for mouse and window-based interaction
as well as Unicode standards for text encoding, Medley has been
modernized to give users a look and feel that will be more familiar
in the context of today’s computer interfaces.

Interlisp.org created an online version of Medley Interlisp using
Docker and Amazon Web Services, providing for users to experi-
ence the system through aweb browserwithout running any of the
Medley system’s components on their local computing platform.

When they are ready, if they choose they can install a version of
Medley Interlisp onto a local computer system and download files
created using the online platform to be used on the same system.

During 2023, online Interlisp had 428 registered users account-
ing for 1,685 sessions, along with 2,588 anonymous guest sessions.

3 INTERLISP IN PERSPECTIVE
The history of Interlisp is interwoven with the early history of
artificial intelligence as many AI researchers had access to DEC
PDP-10/DECsystem-10 computers which could run relatively large
programs on a platform with 256K words of real memory [1]. In-
terlisp provided a residential programming environment in which
the software development functions of edit, compile, link, and exe-
cute could be performedwithout leaving the Interlisp environment
[16], along with a suite of tools for writing documentation.

In Interlisp, a user edits and evaluates Lisp objects that reside in
an image in memory. The code is saved to files that are more like
code databases than traditional source files. Users do not modify
the files but load their contents into memory to edit, compile, and
execute. The File Manager provides a simple interface that saves
code in a memory image to disk, along with archiving unsaved
code changes when a user closes a session so unfinished work can
be resumed later. The beginning of a file specifies metadata de-
scribing the “file environment” and readtable associated with the
file. The File Manager coordinates the development tools and read-
able code management tasks. It notices the changes to Lisp objects
edited with SEdit or manipulated in memory, tracks what changed
functions and objects need to be saved to symbolic files, and carries
out the actions for building programs such as compiling or listing
them (working in some ways like Unix’s make).

This model is unique even today, with a few programming sys-
tems like Smalltalk and Symbolics Genera offering similar capa-
bilities but nothing exactly matching Medley’s model. Although
Interlisp was not the first version of Lisp (there were several on
mainframes and early minicomputers), it is safe to say that it influ-
enced most succeeding versions. Medley’s development coincided
with the creation of the Common Lisp standard and its design in-
fluenced decisions by the CL committee, which included Medley
developer Larry Masinter. Records of their thought process can be
found in their email threads [8]. Interlisp was implemented on top
of a virtual machine, preserving vertical integration, and many of
its utilities were also written in Interlisp. Conversely, most other
Lisp systems were written in imperative programming languages
like C for performance reasons.

3.1 A Model of Interactive Software
Development

Medley Interlisp was created to provide a computing environment
for research into and development of large-scale applications. To
this end, Xerox PARC users as well as others developed tools to
facilitate software development through an interactive graphical
user interface (GUI) in a collaborative environment [6]. Among
these utilities were MasterScope, Spy, DWIM, CLISP, and LOOPS.
Over 100 such tools are collected in the LispUsers library of con-
tributed software, some of which have yet to appear in modern
software development toolsets.

ELS 2024 4

The Medley Interlisp Revival ELS’24, May 6–7 2024, Vienna, Austria

Numerous utilities were developed at institutions apart fromXe-
rox PARC, such as NASA, several DARPA contractors and commer-
cial firms. We are searching to identify these tools, acquire source
code where possible, adapt them to run onmodern computing plat-
forms and make them available along with appropriate licenses
and documentation through the GitHub and Zotero repositories.

4 MEDLEY INTERLISP ECOSYSTEM
Components of the Medley Interlisp Ecosystem include:

• Maiko: the emulator software for the Interlisp virtual ma-
chine;

• Medley Interlisp: the Interlisp source code and its utilities
and tools;

• Applications: including several Interlisp applications, such
as ROOMS, Notecards, LFG, STRADS, IDA, as well as other
Lisp system applications; and

• Documentation: a comprehensive collection of books, pa-
pers, technicalmemoranda, andmanuals regarding Interlisp,
and extending to other Lisp variants.

Interlisp.org welcomes contributions of source code and docu-
mentation to add to its repositories. The following sections briefly
describe these components and work done to restore them.

4.1 Maiko
Maiko is the emulator implementing the virtual machine within
which Interlisp runs.1 Maiko was initially developed by Fuji Xe-
rox but acquired by Xerox PARC, which continued to maintain
and enhance it. Written in Kernighan and Ritchie C, Interlisp.org
developers have modernized it, making it ANSI C compatible. A
few of these modifications included resolving issues of signed vs.
unsigned characters, adding prototypes for functions, ensuring all
parameters have types, fixing some incorrect translations of Lisp
code to C code and optimizing all virtual machines’ opcodes.

A major goal of this modernization process was to facilitate
moving the Medley Interlisp ecosystem to modern computing plat-
forms. Numerous programming changes were made to ensure that
Maiko could run on Windows 10/11, recent MacOS versions and
Linux and WSL-based platforms, as well as in the form of a hosted
public installation accessible through web browsers.

4.1.1 Running Natively onWindows 10/11. Previously, running on
Windows required the use of the Medley Docker container orWSL.
Both involved significant effort to set up alongwith knowledge not
possessed by most Windows users. Native support was developed
using Cygwin and SDL2, allowing the use of a one-click installer
in the form of an .exe file.

4.1.2 Support for AArch64. The build scripts for the Maiko virtual
machine were extended to support the AArch64 (ARM) platform.
This effort established amodel for generating build scripts for other
platforms, such that any systemwhich has an ANSI C compiler can
host a version of Medley Interlisp.

4.1.3 Major Platform Installers. Installing Medley was formerly a
multi-step process requiring a degree of expertise with the admin-
istrative tools of a given platform. A single-step installer using a
1https://github.com/Interlisp/maiko

“one-click” approach was developed for MacOS, Windows (native),
Windows runningWSL and Cygwin andmany Linux distributions,
allowing a user to quickly and easily install a Medley release and
do meaningful work.

4.2 Medley Interlisp
Medley Interlisp includes the basic functions implementing the In-
terlisp language and environment as well as a selection of develop-
ment tools. Because these utilities were written in Interlisp, many
were found to run without major changes once the basic system
became operational.

4.2.1 Common Lisp Support. With the groundswell of support for
Common Lisp in themid-1980s, Xerox PARC extended the Interlisp
environment to support Common Lisp, specifically as of Common
Lisp: The Language, Version 1 (CLtL1), along with CLOS and CL’s
condition system.The infrastructure supporting Interlisp andCom-
mon Lisp is fully integrated such that functions from both dialects
are available within the same system in separate software pack-
ages, albeit with some rough edges we are working out.

Figure 2: Code evaluated in both Interlisp andCommon Lisp
addressing a common data structure.

For example, Figure 2 shows two Exec windows – one using
the Interlisp readtable addressed through the package IL: and one
using the Common Lisp readtable addressed through the package
CL:. The pictured code creates a list in Interlisp, modifies it in Com-
mon Lisp and evaluates it in both dialects.

The Common Lisp integration with the Interlisp tools was in-
complete. Substantial work has made it easier to use some of the
Interlisp tools like HELPSYS and MasterScope with CL. Also, some
of the functions and directives in CLtL2 are not available (such as
‘declaim’ versus ‘proclaim’). As we discover these we are determin-
ing how to provide the missing functionality, but some might not
be available until later in 2024.

4.2.2 Editing and Browsing Support. Since the early 1980s Medley
Interlisp has used a 16-bit internal representation of characters in

ELS 2024 5

ELS’24, May 6–7 2024, Vienna, Austria Andrew Sengul

strings and atoms in the form of Xerox XCCS codes [9], which
were mapped into appropriate glyphs for display and printing. We
have since generalized character reading/writing functions as part
of our external formatting project. If a file’s external format is spec-
ified as Unicode when a stream is opened, Unicode byte sequences
are read into 16-bit Unicode codes, which are translated into their
XCCS equivalents before being delivered to the calling function.
Support for ISO8859 and certain Japanese conventions are also pro-
vided. This system removes the need for most programmers using
Medley to directly deal with character encoding.

TEdit, the text editor, was extended with Unicode support in a
way providing for better efficiency, reliability, and maintainability
of the system [14]. TEdit reads all characters into an internal edit-
ing buffer and creates pointers to the bytes on the file that repre-
sent those characters. It only interprets those bytes when it needs
to display that section of the file, move characters from one place
to another in the file, or copy them to some other application.Thus
a TEdit session on a large file opens quickly and only occupies a
small amount of memory.

Work on TEdit has encompassed a major portion of the modern-
ization effort over the past three years because assumptions about
the XCCS file format were threaded all through the core TEdit im-
plementation. Every location of XCCS code usage had to be tracked
down and this revealed a variety of bugs, inconsistent behaviors
and maintainability issues, which required substantial refactoring.
As of Spring 2024 this work is finally coming to the end, bring-
ing significantly greater robustness and reliability to the Medley
Interlisp system.

Additional changes allowed the ingestion of Xerox Alto Bravo-
format files, making it possible for legacy documents to be con-
verted to PDF through invocation of an external converter. Also,
HELPSYS was extended to allow lookup and display of the Com-
mon Lisp Hyperspec and other Medley documentation.

4.2.3 UnixUtils. Medley was enhanced to allow it to reach out to
the host environment platform to accomplish system-level tasks
that are not available inMedley.These include ShellBrowser, which
opens a URL in the specified browser, and ShellOpen, which opens
a host-resident viewer for a specified file.

4.2.4 PDFStream. Medley incorporated a native imagestream im-
plementation for producing PostScript™ hardcopy files. The PDF
format is not supported as it was not yet invented when this sys-
tem was developed, but an interim PDF solution from 2023 allows
creating a PS file and executing a UnixUtils shell script to convert it
to PDF via Ghostscript’s ps2pdf utility. Medley’s FileBrowser was
extended to automatically open PDF files in a separate window us-
ing a host-resident PDF viewer.

4.2.5 Github Integration. Github is being used to manage the co-
ordination of multiple developers across several time zones and
countries in extending Maiko, Medley, and the tools and utilities.
A major effort was the integration of Github functions with the
Interlisp File Manager. GITFNS is a set of functions that includes
a menu-driven interface to compare Lisp source files on a function-
by-function basis, supporting Interlisp’s characteristic “residential”
approach to development.

4.2.6 Mouse and Keyboard Usage. Originally, Interlisp supported
the three-buttonmice availablewithmanyXerox computers.These
have largely disappeared so the interface APIs have been extended
to support mice with two buttons (as often used with Windows),
one button (as with Macs) or a touchpad. Function keys on several
popular keyboards have been mapped to codes emitted by Xerox-
type mice to allow access to the original functionality; a “meta”
key allows emulation of the middle mouse button of a three-button
mouse. Work is ongoing to implement more scroll wheel and mid-
dle mouse button functionality.

Only a few keyboard models were available when Interlisp was
developed and every application had a unique way of associating
input keycodes with program functions. This is impossible now;
users want uniform treatment, no matter what keyboard they use.
Interlisp.org is working to broadly organize keyboard encoding
and communication because keyboard handling is buried in sev-
eral different locations within Maiko and Medley. Different utili-
ties interpret certain keystrokes in a variety of ways.

Our goal is to build a unified keyboardmodel that will accommo-
date a large number of commercial keyboards and unify keyboard
handling across tools and applications. This is likely to involve
translators interpreting “niche” keyboard types as more common
keyboards and/or translators from actual keycodes to an internal
model. We expect this to increase the speed with which we can
port Medley to different computing platforms.

4.3 Applications
Numerous applications have been built using versions of Interlisp
includingmany earlyAI tools aswell as ROOMS[4], NoteCards[15],
a workbench for writing LFG grammars[7], Intelligent Database
Assistant (IDA), LOOPS, and the Strategic Automated Discovery
System (STRADS) [5]. Recently, an affiliate of Interlisp.org discov-
ered an archive of the Stanford AI Laboratory containing sources
for Doug Lenat’s AM and Eurisko programs2, written in an early
version of Interlisp. Interlisp.org has demonstrated they can be
loaded into a Medley Interlisp environment with minimal changes
and are documenting steps to make them usable again.

Interlisp.org is also collecting open source Common Lisp pro-
grams and using them to test the Medley Common Lisp implemen-
tation, with some changes to make them easier to use, and provid-
ing them through our GitHub repository for public use. Some of
these applications include ATMS, BB1 and NIKL. Work will con-
tinue throughout this year to get them running in Medley reliably
and provide minimal documentation (or more, if possible).

4.4 LOOPS
The Lisp Object-Oriented Programming System (LOOPS) is unique
among programming systems in that it combines four different
paradigms for software development:

• Imperative/Functional Programming
• Object-Oriented Programming
• Aspect-Oriented Programming
• Rule-Based Programming

2https://white-flame.com/am-eurisko.html

ELS 2024 6

The Medley Interlisp Revival ELS’24, May 6–7 2024, Vienna, Austria

The integration of these paradigms provides the software archi-
tect and developer with a comprehensive toolkit for building large
applications [2], allowing for the choice of a data representation
and problem solving approach that best meets the needs of a given
application. The Medley Interlisp tools and utilities were extended
to operate with the LOOPS constructs seamlessly, and Medley’s in-
terface tools allow the creation of graphical displays reflecting the
values of variables to which they are attached.

Researchers at PARC developed the Truckin’ game to help users
understand how to program in a multiparadigm environment and
visualize what was happening as the game evolved [13]. Truckin’
simulated the activity of truck drivers working to make deliveries
on time, accounting for geography, varying types of goods and the
need to refuel [12]. LOOPS is documented in three books that ad-
dress the Basic System, the Tools and Utilities, and the Rule-Based
System; the latter volume details Truckin’ and its development.

4.5 Documentation
Interlisp.org has access to a wide variety of documentation about
Interlisp and Common Lisp, including original Xerox PARC manu-
als, memoranda and program and application documentation from
the Computer History Museum’s PARC archive. Much of this doc-
umentation was written by the original developers who already
knew how to use the system and can be obtuse for new users. In-
terlisp.org has released additional volumes on the usage of Medley
Interlisp and LOOPS since 2021, all of which are available at In-
terlisp.org. These include:

• Interlisp: The Language and its Usage
• Medley Interlisp:The Interactive Programming Environment
• Medley Interlisp: Interactive Programming Tools
• LOOPS Volume I: The Basic System †

• LOOPS Volume II: Tools & Utilities †

• LOOPS Volume III: Rule-Based Systems ††

More work documenting Interlisp and Common Lisp applica-
tions is planned for the next two years, with a focus on supporting
new users.

4.5.1 Community Outreach. We revamped the Interlisp.org web-
site over the past year to make it easier to navigate, offering visi-
tors an array of options to support further Medley Interlisp devel-
opment. The website provides access to most of the material that
Interlisp.org has collected, with more information being added as
we locate sources. Our collection of new and recovered documents
extends beyond the website to the GitHub and Zotero repositories.

Interlisp.org continues its outreach to the broader Lisp and com-
puter science community through technical presentations. Three
talks were presented in 2023:

• BALISP: In March 2023, the project’s efforts were presented
to the Bay Area Lisp meetup group. The slides are available
on the project’s Google Drive3 and the talk on Youtube4.

• Software PreservationNetwork (SPN): OnNov. 2, 2023 Larry
Masinter presented to the SPN Idea’s Workshop technical

†Draft available at Interlisp.org
††In progress, forthcoming
3https://drive.google.com/file/d/1xpXSoEnc5PPnIa7BHcionBbc8v-
Nxp7N/view?usp=sharing
4https://www.youtube.com/watch?v=N1MobfEaoWY

details of our work as well as suggesting future collabora-
tive projects across the community.

• BCS Computer Conservation Society (CCS): Steve Kaisler
presented a talk entitled “Software Archaeology: The Med-
ley Restoration Project” to the CCS Monthly Meeting on
Nov. 16, 2023 in London, England. It included a brief his-
tory of Interlisp, a review of some applications, and discus-
sion of challenges in in modernizing Medley Interlisp (some
of which have been presented in this paper).

Articles on the Medley Interlisp project have appeared in The
Register [11], Hackaday [10] and Hacker News [3].

ACKNOWLEDGMENTS
We acknowledge the leadership and historical perspective of some
of the original developers - Larry Masinter, Nick Briggs, Frank Ha-
lasz, Ron Kaplan and the other members of Interlisp.org. We also
acknowledge the estate of John Sybalsky for granting rights to use
and distribute the source code for Medley Interlisp, and Eric Kalt-
man and his students at UC Channel Islands for efforts in organiz-
ing the Zotero repository. Funding for this effort has been provided
by members of Interlisp.org.

REFERENCES
[1] Daniel G. Bobrow and Bertram Raphael. New programming languages for artifi-

cial intelligence research. ACMComput. Surv., 6(3):153–174, sep 1974. ISSN 0360-
0300. doi: 10.1145/356631.356632. URL https://doi.org/10.1145/356631.356632.

[2] Daniel G. Bobrow andMark Stefik. The LOOPS Manual. Xerox Corporation, Palo
Alto, CA, USA, 1983.

[3] Paolo Amoroso et al. My encounter with Medley Interlisp., January 2023. URL
https://news.ycombinator.com/item?id=34300806.

[4] D. Austin Henderson and Stuart Card. Rooms: the use of multiple virtual
workspaces to reduce space contention in a window-based graphical user in-
terface. ACM Trans. Graph., 5(3):211–243, Jul 1986. ISSN 0730-0301. doi:
10.1145/24054.24056. URL https://doi.org/10.1145/24054.24056.

[5] Stephen H. Kaisler. A knowledge based system for geopolitical analysis. In
Proceedings of the 57th MORS Symposium. Military Operations Research Society,
Jun 1989.

[6] Stephen H. Kaisler. Medley Interlisp: The Interactive Programming Environment.
Interlisp.org, Palo Alto, CA, USA, 2021.

[7] Ronald M. Kaplan and John T. Maxwell. LFG Grammar Writer’s Workbench. Xe-
rox Corporation, Palo Alto, CA, USA, Mar 2003.

[8] David Moon, Kent M. Pitman, Larry Masinter, Brad Miller, Scott Fahlman,
Warren Harris, and Jon L White. Issue: Eval-other (version 1), 1988. URL
https://github.com/masinter/parcftp-cl/blob/main/cl/cleanup/old-mail/eval-
other.mail.

[9] Greg Nuyens. Font/Character documentation. Xerox Corporation, Palo Alto, CA,
Mar 1986.

[10] Maya Posch. Reviving Interlisp with the Medley Interlisp project,
July 2023. URL https://hackaday.com/2023/07/09/reviving-interlisp-with-the-
medley-interlisp-project/.

[11] Liam Proven. Revival of Medley/Interlisp: Elegant weapon for a more civilized
age sharpened up again, November 2032. URL https://www.theregister.com/
2023/11/23/medley_interlisp_revival/.

[12] Mark Stefik. Truckin’ and the knowledge competitions, 2017. URL https://www.
markstefik.com/?page_id=359.

[13] Mark Stefik, Daniel G. Bobrow, Sanjay Mittal, and Lynn Conway. Knowledge
programming in loops: Report on an experimental course. The AI Magazine,
pages 3–13, 1983.

[14] Xerox Artificial Intelligence Systems. Interlisp-D: A Friendly Primer. Xerox Cor-
poration, Pasadena, CA, USA, Nov 1986.

[15] Xerox Special Information Systems. NoteCards™ Release 1.2 Reference Manual.
Xerox Corporation, Pasadena, CA, USA, Apr 1985.

[16] Warren Teitelman. Interlisp. SIGART Bull., page 8–9, dec 1973. ISSN 0163-5719.
doi: 10.1145/1056786.1056787. URL https://doi.org/10.1145/1056786.1056787.

ELS 2024 7

Lisp Query Notation—A DSL for Data Processing
Anders Hoff

inconvergent@gmail.com

ABSTRACT
This paper introduces Lisp Query Notation (LQN). A Common Lisp
library, DSL and command-line utility for manipulating text files,
and structured data such as JSON and csv, and Lisp Source code.

First we introduce the motivation and design principles. Then
we present the LQN syntax, and demonstrate how to use LQN as a
library to manipulate data structures in CL. Moreover we demon-
strate how to use LQN from the command-line. After describing
several operators and their syntax in more detail we finally describe
a few possibilities for improvements and further work.

CCS CONCEPTS
• Software and its engineering→ Domain specific languages.

KEYWORDS
demonstration, command-line utility, data processing, domain spe-
cific language, structured data, functional programming, common
lisp
ACM Reference Format:
Anders Hoff. 2024. Lisp Query Notation—A DSL for Data Processing. In
Proceedings of European Lisp Symposium (ELS’24).ACM, New York, NY, USA,
4 pages. https://doi.org/10.5281/11001584

1 INTRODUCTION
Lisp Query Notation (LQN) 1 is a Domain Specific Language (DSL),
Common Lisp (CL) library, and command-line utility for text and
data processing. It draws inspiration from other well-known text
processing tools, such as Sed, AWK, and jq2. In particular LQN
mimics jq’s tacit style and chaining of operations.

We start by describing the motivation and main features of the
query language. Further we introduce the LQN CL library, before
we make the seamless transition to using the LQN terminal com-
mands. Finally we comment on some implementation details and
challenges; performance improvements; and potential further work.

2 MOTIVATION, DESIGN AND
IMPLEMENTATION

LQN started as an exercise. The primary motivation beyond that
is to develop a terse, but intuitive language that makes it fast and
convenient to write small (sometimes throw-away) programs; pri-
marily on the command line. Where all—or most—of the processing
1https://github.com/inconvergent/lqn (v. 2.0.1)
2https://jqlang.github.io/jq/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 06–07, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.5281/11001584

can be done in the same language. It should also be possible to fall
back to conventional CL when LQN is incomplete, inconvenient or
insufficient.

It should handle common data formats such as plain text, JSON,
csv and Lisp data. Moreover it should handle tasks encountered
by e.g. data scientist, data engineers, and when making Generative
Art. All of which are practices that require data wrangling. The
latter is particularly relevant as we use CL for our art practice. As
such it is convenient to export, import and process data in a format
native to Common Lisp.

2.1 Compiler
The current compiler performs all code generation in a single pass.
Because of this inherent simplicity the core of the compiler is only
about 400 lines of code. The syntax is flexible enough that mixing
the LQN syntax with CL and other libraries does not appear to
present much friction.3

2.2 Internal Data Representation
In order to handle multiple data formats LQN always loads all input
data into native CL objects. Primarilyvectors andhash-tables.
E.g. text files are read into vectors of strings; whereas JSON
is read into vectors and hash-tables, depending on the struc-
ture.

[{ "id": "1",
"objs": [{ "obj": "Ball",

"is": "round" }] },
{ "id": "2",
"msg": "Hi",
"objs": [{ "obj": "Box",

"is": "empty" },
{ "obj": "Yak",
"is": "shaved" },

{ "obj": "Computer" }] },
{ "id": "3",
"msg": "Hello!",
"objs": [{ "obj": "Paper" },

{ "obj": "Bottle",
"is": "empty" }] }]

Listing 1: Contents of dat.json

2.3 CL Library
In the first example we use the function, jsnloadf, to load some
JSON from a file. The contents of dat.json are in listing 1.
* (in-package :lqn)

* (jsnloadf "dat.json")
> #(#<HASH-TABLE :COUNT 2 {1793}>

3So far LQN has only been tested in SBCL on Ubuntu 22.04 LTS, with a limited number
of other libraries.

ELS 2024 8

ELS’24, May 06–07, 2024, Vienna, Austria Anders Hoff

#<HASH-TABLE :COUNT 3 {1E43}>
#<HASH-TABLE :COUNT 3 {2B33}>)

We see that the JSON file has been loaded into a CL vector
with three hash-tables. Storing data in hash-tables and
vectors internally facilitates easy data manipulation and extrac-
tion. For the LQN compiler as well as the user. We can use ldnout
to serialize data before printing it:

* (ldnout (jsnloadf "dat.json"))
> #(((:ID . "1")

(:OBJS . #(((:OBJ . "Ball")
(:IS . "round")))))

...
((:ID . "3")
(:MSG . "Hello!")
(:OBJS . #(((:OBJ . "Paper"))

((:OBJ . "Bottle")
(:IS . "empty"))))))

Note that ldnout serializes to a combination of vectors, and
alistswithkeyword keys.Wewill use the acronymLDN—“Lisp
Data Notation”—to refer to this particular way of serializing such a
nested structure.4

The primary entry point to the LQN compiler is the qry macro.
The following is a query that simply returns the input. As we will
see shortly, _ is used to refer to the current data in any operator or
context.

* (defvar *dat* (jsnloadf "dat.json"))

* (ldnout (qry *dat* _))

2.4 Queries & the Get Operator
There are several different ways to get, select or iterate data in
LQN. The simplest is (@ ...), which can be used to access a
particular key, index or path. The optional second argument is used
as a default value. Here are some examples:

* (qry *dat* (@ :1/msg))
> "Hi"

* (qry *dat* (@ :1/abc :missing))
> :MISSING

* (ldnout (qry *dat* (@ :*/msg)))
> #("Hi" "Hello!")

* (ldnout (qry *dat* (@ :*/msg :nope)))
> #(:NOPE "Hi" "Hello!")

* (ldnout (qry *dat* (@ :*/objs/*/obj)))
> [["Ball"],

["Box", "Yak", "Computer"],
["Paper", "Bottle"]]

This makes it easy to quickly look at parts of a data structure.
For brevity we omit calls to ldnout in the examples from now on.

2.5 Pipe, Map and Filter
Data can be chained, iterated and filtered in a few different ways.
First we consider these three operators:

4In time we might add support for Extensible Data Notation (edn), which is a little
more more pleasant to look at. LDN will do for now.

• (||...): pipe the result of each clause to the next clause.
Returns the last result. We will see that it usually isn’t nec-
essary to use pipe explicitly;
• #(...): map these clauses across a vector. If there are
multiple clauses they are wrapped in a pipe. Returns new
vector;
• [...]: filter vector by one or more clauses. Returns new
vector.

The following is an example where we chain a map and filter to-
gether. First we select the id from each item and convert it to an
integer; then we drop odd values.
* (qry *dat* (|| #((@ :id) int!)

[evenp]))
> #(2)

We note that bare symbols (int!, evenp) inside their respective
operators are called as functions with _ as the first argument. More-
over, qry will wrap all arguments beyond the first in an implicit
pipe operator. So we get the same result if we write this:
* (qry *dat* #((@ :id) int!) [evenp])

You can also use arbitrary expressions:
* (qry *dat* #((@ :id) int! (+ 10 _))

[(< _ 13)])
> #(11 12)

If there are multiple clauses in the filter, the default is to include
items that match either clause. E.g. [evenp (< _ 2)] to select
even numbers as well as numbers smaller than 2.

To require multiple clauses to be satisfied, use the +@ modifier:
* (qry *dat* #((@ :id) int!)

[+@oddp (+@< _ 2)])
> #(1)

Similarly, the -@ modifier drops items on some condition; in this
case the number 1:
* (qry *dat* #((@ :id) int!)

[oddp (-@= _ 1)])
> #(3)

The full behaviour of the filter modifiers is explained in the doc-
umentation. They can be combined to some extent, but if the be-
haviour of the modifiers do not suit your situation, you can use
regular CL, as we have seen already.5

2.6 LQN on the Command-line
The transition to use LQN in the terminal is virtually seamless.
Currently there are three different entry points to LQN: Namely
the commands tqn, jqn and lqn; for txt, JSON, and Lisp data
respectively. They expect different input data formats, but they all
behave in (nearly) the same way. You can always output data to
any format from either terminal command, as you can see in this
excerpt from the output of tqn -h on the command-line:
$ tqn -h
> Usage:

tqn [options] <qry> [files ...]
cat sample.csv | tqn [options] <qry>

5We also note that the behaviour of these modifiers is one of the open questions of the
overall design of LQN.

ELS 2024 9

LispQuery Notation—A DSL for Data Processing ELS’24, May 06–07, 2024, Vienna, Austria

Options:
-v prints the compiled qry before the
result. For debugging.
-j output as JSON.
-l output to readable lisp data (LDN).
-t output as TXT [default].
-z preserve empty lines in TXT.
...

2.7 Processing text
To start, here is a query that splits the incoming string at every
"x", before it converts each new string to uppercase (sup).
splt will trim off any white space by default.
$ echo 'a b c x def x 27'\
| tqn '(splt _ :x) sup'

> A B C
DEF
27

abc
1
33
def
abcdefghi
7

Listing 2: Contents of dat.txt

Notice that the first expression receives the entire incomingstring
as its input. Whereas “bare” top-level symbols inside the implicit
pipe operator are called on each individual item in the incoming
vector; i.e. they are shorthand for the map operator.

Next we read from the txt file dat.txt. You can see the con-
tents in listing 2. This query finds strings that contain the substring
"ghi", as well as all items that can be parsed as an integer by
int!?:
$ tqn '[:ghi int!?]' dat.txt
> 1
33
abcdefghi
7

We have seen the filter operator already. But note that now a
keyword is used as shorthand for case insensitive substring search.6
strings do the same, except then the case is required to match.

The syntax is the same as we saw when using LQN as a library.
So we can use modifiers to require multiple substring matches:
$ tqn '[:+@abc :+@ghi]' dat.txt
> abcdefghi

animal,cat,angry
animal,yak,shaved
obj,pen,red
shape,ball,round

6There is no explicit support for regex in LQN yet. But using existing libraries is
trivial.

shape,box,square

Listing 3: Contents of dat.csv

2.8 Transforming with Selectors
A frequent task when handling data structures like in listing 1 is
iterating all items to perform some selection and/or transformation.
LQN has several operators for this purpose:
• {...}: select keys from ahash-table into a newhash-table;
• #{...}: select keys from vector of a hash-tables
into a new vector of hash-tables;
• #[...]: select keys from vector of a hash-tables
into a new vector.

So to select the id and msg fields from all items we can do this:
$ jqn '#{ :id :msg }' dat.json
> [{ "id": "1", "msg": null },

{ "id": "2", "msg": "Hi" },
{ "id": "3", "msg": "Hello!" }]

If you also want to transform some keys you can do this instead:
$ jqn '#{ (:id (+ 10 (int! _)))

(:?@msg sup) }' dat.json
> [{ "id": 11 },

{ "id": 12, "msg": "HI" },
{ "id": 13, "msg": "HELLO!" }]

Again we see that bare symbols are interpreted as a function with
the current value as the only argument. Whereas expressions are
evaluated as they are.

Notice that we have used the ?@modifier to handle that the first
item is missing a field. In all are three modifiers to augment the
behaviour of selectors:
• ?@: include if the key exists and its value is not NIL;
• %@: include only if our expression is not NIL;
• -@: drop this key.

Consider this query to see how the %@ modifier only includes the
msg key if the length of the string is greater than 3.
$ jqn '#{ :id

(:%@msg (and (> (size? _) 3)
(sup _))) }

' dat.json
> [{ "id": "1" },

{ "id": "2" },
{ "id": "3", "msg": "HELLO!" }]

Sometimes you want everything except some keys. The -@modifier
combined with _ allows us to discard or override keys. As such, the
following will yield the same output as we just saw:
$ jqn '#{ _ :-@objs

(:%@msg (and (> (size? _) 3)
(sup _))) }

' dat.json

Selectors, and all other operators can be nested. Here is one
more example where we use nested selectors, and print the result
as newline separated JSON.
$ jqn -tjm '#[(:objs #[(:obj sdwn)

(:?@is sup)])]

ELS 2024 10

ELS’24, May 06–07, 2024, Vienna, Austria Anders Hoff

' dat.json
> ["ball","ROUND"]
["box","EMPTY","yak","SHAVED","computer"]
["paper","bottle","EMPTY"]

LQN could use more utilities for handling csv files properly. But
here is a more complex expression to illustrate how to group items
by the first column of the csv file in listing 3; before printing the
output as JSON.
$ tqn -j '#((splt _ ","))

(?grp (@) (new$:id (@ 1)
:is (@ 2)))

' dat.csv
> { "animal": [

{ "id": "cat", "is": "angry" },
{ "id": "yak", "is": "shaved" }],

"obj": [...],
"shape": [...] }

2.9 Other Operators
There are several other operators we haven’t covered. Here are a
few compressed examples that demonstrate additional operators,
in combination with what we have seen already:
• ?srch: search nested data with custom expressions. E.g.
this will find all symbols in a lisp file and sort them as strings:
$ lqn -t "(?srch symbolp) (uniq _)

(sort _ #'string-lessp)" <file>

• ?txpr: search and replace nested data. The following will
alter the id of any JSON object with at least two items.
$ jqn '(?txpr (>= (size? (@ :items)) 2)

{_ (:id (str! "new-" _))})
' [file]

• ?fld: reduce with a function or expression. This expression
will parse and sum integers from the second column in a
csv file:
tqn '#((splt _ ",") (@ 1) int!?) [is?]

(?fld 0 +)' [file]

• ?rec: repeat an expression while the/an expression is T.
The following will iteratively add the next Fibonacci number
to the end of the incomingvector, until it reaches a number
larger than 50:
$ echo '#(1 1)' | lqn '

(?rec (<= (@ -1) 50)
(cat* _ (apply* + (tail _ 2))))'

LQN also has a number of other utilities fornumbers,vectors,
hash-tables, strings, symbols and lisp data. Such as: get-
ting ranges, indices or keys; concatenating, compacting and com-
bining; comparing; and checking and coercing types. The LQN
documentation covers this in more detail.

3 NOTES ON PERFORMANCE
The current implementation of LQN loads all the input into appro-
priate data structures before executing any of the transforms. This
simplifies the implementation, and makes it possible to do some
things that would otherwise be difficult or impossible. However, it

also has implications for performance; most notably it can increase
memory usage. A possible way alleviate this is to adapt the vari-
ous operators to support e.g. generators or streams in addition to
vectors and hash-tables.

Depending on the environment there might be a noticeable delay
when using LQN on the command-line, as SBCL first has to start and
load the LQN library, before it can load the input data and execute
the query. A possible way to reduced this delay considerably is to
create an SBCL image (sb-ext:save-lisp-and-die) where
LQN is already loaded. Then use the image to compile and execute
the query.

Additionally it is noticeably slower to process data from a pipe
on the command-line; compared to having LQN read the same data
from a file, or from *standard-input*. We have been unable
to find an explanation for this, but it is likely an issue in the current
implementation; as opposed to an issue with the overall approach.

4 CONCLUSION & FURTHERWORK
lqn is a young experiment. It has not been tested in many dif-
ferent circumstances, or for different tasks. For this reason it is
hard to know if the behaviour—such as defaults, and the order of
arguments—of the operators and utilities are convenient. Obviously
this will always depend on the use-case. But there is likely room
for improvement that will become more apparent with further use.

There is also a discussion to be had about the syntax of several of
the operators and modifiers. Particularly the selectors in section 2.8.
Maybe the overall syntax can be cleaner, or easier to read?

The language is still missing native utilities for data process-
ing. Such as calculating statistics (median, mean, variance), sorting,
and aggregations. And while there are some ways to interact with
other terminal commands, there is considerable room for improve-
ment. The same applies to interacting with files and the file system.
Both from the terminal and when using LQN as a library.

In a similar vein, it would be an interesting challenge to imple-
ment a more interactive command-line interface. Where the CLI
interaction and syntax is closer to the LQN language than e.g. bash.

Finally we would like to note that we have already found LQN
useful for performing code transformation in (CL) compilers for
other DSLs. We did not anticipate this from the beginning, but
it will probably shape the direction of further LQN development.
In particular it would be helpful to improve utilities and opera-
tors when it comes to processing CL data; in particular data that
represents source code. In all LQN is a useful little language, with
potential for expansion in several dimensions.

5 ACKNOWLEDGEMENTS
Thanks to Jack Rusher, Robert Smith and Rainer Joswig for an-
swering my questions; Zach Beane for making and maintaining
Quicklisp; and thanks to the larger Lisp community for all their
interesting work.

ELS 2024 11

Grants4Companies: The Common Lisp PoC
Philipp Marek

Bundesrechenzentrum GmbH
Vienna, Austria

philipp.marek@brz.gv.at

Björn Lellmann
Bundesministerium für Finanzen

Vienna, Austria
bjoern.lellmann@bmf.gv.at

Markus Triska
Bundesministerium für Finanzen

Vienna, Austria
markus.triska@bmf.gv.at

ABSTRACT
The application Grants4Companies was recently introduced in the
Austrian Federal Business Portal (Unternehmensserviceportal, USP).
The productive application displays a list of business grants which
apply to a business depending on the data available about this busi-
ness in the systems of Austrian public administration. In this article
we describe the underlying Proof of Concept implementation, used
to experiment with and test new features. This PoC implementation
is written in Common Lisp, interfaces with a Prolog-reasoner, and
makes use of formalised grant descriptions based on S-expressions.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Computing
methodologies→ Knowledge representation and reasoning;
• Software and its engineering→ Context specific languages.

KEYWORDS
S-Expressions, Expert System, Applications
ACM Reference Format:
PhilippMarek, Björn Lellmann, andMarkus Triska. 2024. Grants4Companies:
The Common Lisp PoC. In Proceedings of the 17th European
Lisp Symposium (ELS’24). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.5281/zenodo.10992449

1 INTRODUCTION
Business grants offer vital funding opportunities for businesses and
companies, and at the same time provide an important tool for sup-
porting and steering economy. The efficiency of this tool, however,
depends on whether it is easily possibly for businesses to find the
suitable grants. In order to support businesses in this search in Aus-
tria we recently introduced the application Grants4Companies in
the Austrian Unternehmensserviceportal1 (USP, the Business Service
Portal). The USP is the main portal for contact between businesses
and public administration in Austria, currently serving over 120 in-
tegrated applications and more than 600.000 registered businesses.

The application Grants4Companies was introduced in November
2022 and offers registered businesses the possibility to evaluate a list
of business grants based on the data available for the business from
sources in Austrian public administration. For this purpose, formal
eligibility criteria of a number of business grants are formalised in a
1https://www.usp.gv.at/en/index.html

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.5281/zenodo.10992449

logical language. The descriptions and eligibility criteria are based
on the Transparenzportal2, the official Austrian portal containing a
wealth of data about Austrian funding possibilities for businesses as
well as natural persons. Following the explicit consent for using the
data available for the registered business, the formalised eligibility
criteria are evaluated based on data from Austrian registers. The
registers queried are currently the Unternehmensregister für die
Zwecke der Verwaltung3 (Administrative business register, a register
collecting data about businesses from several sources in Austrian
public administration) and the Firmenbuch4 (Austrian company
register). An extension to further registers is planned. The available
grants are then presented to the business based on the evaluation
of their criteria as “criteria are satisfied”, “criteria are not satisfied”
or “information is missing for sufficiently evaluating the criteria”.

To quickly evaluate different strategies, ideas, and concepts, we
implemented a Proof-of-Concept (POC) in Common Lisp in De-
cember 2019; over time we extended this POC to experiment with
and test new features. In this article we describe the POC imple-
mentation and the underlying design choices. Differences between
the POC and the productive software are noted as well. The POC
also includes an interface to a logical reasoning engine for prov-
ing properties of the grants (or combinations thereof) which are
independent of the particular businesses. This reasoning engine is
implemented Prolog. Here we focus on the Lisp-specific parts of
the POC and refer the reader to the companion paper [5] for the
detailed description of the interface to the Prolog reasoning engine.

2 THE INITIAL PROOF-OF-CONCEPT
The POC is written in Common Lisp. Apart from personal pref-
erences the reasons consisted of easier symbolic manipulation,
quicker iteration cycles, and better performance. Based on that
data point, choosing S-expressions as grant definition format (see
Sec. 3) certainly looks like an easy and logical choice, and indeed
was selected after careful deliberation. Apart from reading grant
definitions, type-checking them, allowing evaluation against (fake)
company data (the POC has no connection to the production reg-
ister data bases), and converting the grant code back to natural
language, the POC also acquired (limited) symbolic capabilities:
given a company, which data points (e.g., HQ location) need chang-
ing to match additional grants? Other symbolic computations were
made available by transpiling the grant code to Prolog and pro-
viding a Prolog REPL in the web interface; this allows queries like
Which grant totally includes another grant?. For further discussion
of this topic please see the already mentioned companion paper [5].

2https://transparenzportal.gv.at/tdb/tp/startpage
3https://www.statistik.at/en/databases/business-register/administrative-business-
register-abr
4https://www.justiz.gv.at/service/datenbanken/firmenbuch.36f.de.html

ELS 2024 12

ELS’24, May 6–7 2024, Vienna, Austria Philipp Marek, Björn Lellmann, and Markus Triska

3 GRANT LANGUAGE AND SEMANTICS
There are a few thousand programming languages, even without
counting the one-offs that are used by less than 10 peopleworldwide.
Some share a bit of syntax, others are completely different. As basis
for the formal language for specifying the grant conditions we
needed something
• easy to read,
• unambiguous,
• future-proof (ie. backwards-compatible even for vastly
changed situations),
• and easy to parse.

The first point means no XML; infix operators with their prece-
dences (see the presentation) are worse off for the second. One
format stood out as especially long lasting: S-Expressions. Partici-
pants of this ELS will already know, but the quick overview is:
• Evaluation from inner to outer, left to right within one form5.
• No other precedence rules [6].
• Tokens are either atoms (numbers, strings, symbols), or
– an opening parenthesis,
– a list of (zero or more) tokens,
– and a closing parenthesis.
• Comments are introducedwith one ormore semicolons (com-
patible with Common Lisp), but are not discarded but asso-
ciated with the next form resp. the surrounding form. This
allows to have human-readable explanations collected and
used for explaining the evaluation of a grant.
• For ease of use (and compatibility with Common Lisp), sym-
bols are defined to be case-insensitive; mixed case is not used.
In strings and comments the case is kept, though.

S-Expressions have been cited for these features for a long time[1,
102], even in completely different fields (e.g. music [3, p.171]).

3.1 Concepts of the Formalisation Language
One point that we pondered for quite some time was the actual
language used for the concepts of the formalisation language. We
finally decided on a German/English mix:
• The specific data-query-functions, i.e., atomic concepts, that
are derived from laws written in German were kept in Ger-
man (BETRIEBSSTANDORT-IN, ÖNACE-IN, . . .); the higher sim-
ilarity to the original law proved to be helpful in translating
to computer language.
• Typical programming “keywords” like AND, OR, NOT, used for
constructing complex expressions, were taken from English -
the higher familiarity with these (compared to "UND", "ODER",
"NICHT", which just remind us of Winword macros!) makes
them a better match.

3.2 Packages and Local Definitions
Grant definitions are stored in a GIT repository (for Version Con-
trol, Historical, Reproducability, and Data Sharing reasons). A di-
rectory tree definition ensures that each funding agency has their
own workspace (sub)directory; a scoping rule that reads all grants
within a directory into the same package allows funding agencies

5Common Lisp Hyperspec, 3.1.2.1.2.3 Function Forms

to define their own higher-level functions (see the presentation for
an example).

The package that gets created for each directory imports func-
tions from an API package automatically; so the most-often used
symbols can be referenced directly. In the future, some kind of
marker (eg. a specific filename like package.lisp) might switch to
another behaviour: defaulting to another, improved API package,
or manually specifying a DEFPACKAGE form. This separation into
multiple packages also allows to divide up some responsibilities: by
having high-level constructs in an extra package, it becomes much
easier to maintain that in some separate organization.

An issue that came up right from the beginning is having one
concept inmultiple different implementations. A clause “Der Antrag-
steller muss ein KMU6 sein” is used in many grants; sadly there are
three different definitions for this term, one from the federal gov-
ernment in Austria, one from the EU, and one from the FFG7.

Making (optional) packages available solves this in a neat way -
there are simply three functions, GV.AT:IS-KMU, FFG:IS-KMU, and
EU:IS-KMU. This enables the use of different interpretations of the
same natural language term depending on the source of the reg-
ulation. Of course, the person digitizing the grant needs to know
which one to use, which is a separate can of worms.

3.3 Security
Of course, nothing is ever quite so simple. As the funding agency
is the (only) one who knows exactly what they want, they're the
logical choice for capturing the intent in computer code, and main-
taining it later on - including putting a cut-off date on it, or invali-
dating it some other way. Formalisation of the grants currently still
happens via a few people and not the funding agencies, as would
ideally be the case. But that means that the “code” (which is “data”
here as well) is then run on a different computer system: primarily
the central evaluation platform in the USP, but also decentralized
on some funding agency’s machine (when testing a grant), or po-
tentially at the Statistics Austria (when estimating the number of
businesses that potentially match some newly-defined grant). So
all kinds of concerns regarding security come up! To address these,
the specification says that only exported symbols from defined API
packages may be used - so it's not allowed (respectively possible) to
write (CL:WITH-OPEN-FILE (s "/etc/shadow") ...) in a grant
to hack the grant evaluation platform.

3.4 Example grant
An example of a grant definition is shown in Fig. 1.

4 EVALUATING GRANTS
As grant forms are by definition side-effect free, their evaluation is
in principle straightforward: Evaluate the atomic concepts based
on the available data, and recursively evaluate complex expressions
according to the outermost operator. In the productive version the
atomic concepts are evaluated based on the data available for the
logged-in business from public administration, while the POC uses

6“KMU ” means “Klein- und Mittelunternehmen”, ie. “small and medium-sized
companies”.
7“FFG” is the abbreviation for “Österreichische Forschungsförderungsgesellschaft” (in
English “Austrian Research Promotion Agency”), see https://www.ffg.at/en.

ELS 2024 13

Grants4Companies: The Common Lisp PoC ELS’24, May 6–7 2024, Vienna, Austria

(define-grant ("Umweltschutz- und Energieeffizienzförderung - Förderung sonstiger Energieeffizienzmaßnahmen Villach"
(:href "https://transparenzportal.gv.at/tdb/tp/leistung/1052703.html")
(:transparenzportal-ref-nr 1052703)
(:Fördergebiet :Umwelt)
(gültig-von "2019-01-01"))

"Unter der Berücksichtigung der Verwendung erneuerbarer Energieträger sowie
der Umsetzung der Intention der Umweltschutz- und Energieeffizienzrichtlinie im
Bereich privater Haushalte fördert die Stadt Villach folgende Energieeffizienzmaßnahmen."
;; Voraussetzungen
;;
;; - Förderungswerber/innen können natürliche oder juristische Personen sein.
;; Bei juristischen Personen hat die firmenmäßige bzw. statutenkonforme
;; Unterfertigung des Antrages auf Gewährung einer Förderung durch den
;; Vertretungsbefugten zu erfolgen.
(AND
(GV.AT:natürliche-oder-juristische-Person)
;; - Die Förderungswerber haben bei der Antragstellung zu erklären, dass
;; für die beantragten Förderungen keine weiteren Förderungen von anderen Stellen
;; beantragt wurden.
;; - Ein Förderungsansuchen muss spätestens innerhalb von 8 Monaten nach
;; Umsetzung der Maßnahme/n bzw. Kaufdatum bei der Stadt Villach einlangen
;; - Die Förderung wird nur für die sach- und fachgerechten Umsetzung der
;; Maßnahme (Einbau) im Stadtgebiet von Villach gewährt.
(OR

(Unternehmenssitz-in 20201)
(Betriebsstandort-in 20201))))

Figure 1: Example grant, TPPNr#1052703

dummy data of made-up businesses instead. Apart from this, there
are some finer points for taking into consideration.

4.1 Evaluation modes
Because there are two main use cases, the Proof-of-Concept in
Common Lisp implements two evaluation modes.

Fully Recursive, Exhausting Evaluation. In this mode all the forms
are evaluated and their intermediate results are kept; by reporting
these values in the same tree structure as the grant, manual verifi-
cation of the calculation can be performed (Fig. 2). This evaluation
mode is used when displaying grant results for a single company.

Fast Evaluation using Shortcut Properties. As the grants forms
are pure, we have a few degrees of freedom for manipulating them
or otherwise speed up evaluation. We implemented a short-circuit
evaluation which can quickly discard grant/company pairs, allow-
ing for faster mass assessments: given a newly proposed grant, how
many companies in Austria will be able to apply? For the future,
further optimisation are possible: for commutative operations (like
"AND", "OR", numerical addition via "+"), we can reorder the forms
before compiling. In the typical case of a top-level AND we can look
at the sub-forms, and move the one with the highest probability
for a negative result to the front, benefitting the short-circuiting
operation again. This reordering is not implemented yet, though8.

4.2 Three-valued Logic
Of course not all data required to evaluate whether a company sat-
isfies the formalised eligibility criteria of a grant is always available.
8See chapter 4.9 below.

While data like location of a company needs to be provided before
it is officially recognised, e.g., the (Ö)NACE classification9 is not
complete. In particular, for a sizeable number of companies the
ÖNACE-classification has not yet been assigned. In addition, a data
source might be not available, eg. due to maintenance work.

So the evaluation allows a value of unknown as well; many oper-
ations then need to propagate that unknown upwards. Easy cases
are OR with a true value or AND with a false value. To be precise,
we use (so far quantifier-free) strong Kleene-Logic 𝐾3, considered
e.g. in [4]. This ensures that grants which have been evaluated for a
company to true or false while some of their atomic components
are evaluated to unknown, get evaluated to the same result when
additional data becomes available and these components no longer
return unknown. Range-based reasoning for numeric operations
would also be possible, but is not implemented yet.

4.3 Extension to probabilities
A major difference between the POC and the production software
in the USP is that the POC already got extended to experiment with
a 12-bits+1 probability space, with false being at one end, true at
the other, and the unknown space spanning the values in between,
with the canonical 0.5 unknown value in the exact center of the value
range. This probability space gets evaluated Bayes-compatibly - so
an AND over three unknowns means 0.5 to the third power, or a
probability of 0.125. Of course this makes potentially problematic
assumptions about the independence of the sub-expressions of a
complex expression. The analysis on the suitability of this approach

9https://www.statistik.at/en/databases/classification-database

ELS 2024 14

ELS’24, May 6–7 2024, Vienna, Austria Philipp Marek, Björn Lellmann, and Markus Triska

Figure 2: Evaluated example grant with results.

and potential alternative ones is still ongoing, but its implementa-
tion in the POCmeans it is possible to experimentwith the approach.
By explicitly avoiding saturation10, the strong Kleene-Logic still
applies – but having a range of unknowns means that the output
category where it matters most can be sensibly sorted!

4.4 Numeric calculations in the POC
The POC includes a small set of date and numeric capabilities - like
checking whether a date precedes another (used to find out how
long a company exists), respectively mirroring the calculations in
some of the natural language grant texts; as an example, during the
pandemic the “Härtefallfonds” asked whether the income exceeds
80% of some social security limit. See Fig. 3 for an abbreviated ex-
ample; for production use the part of the calculation that references
a common concept (e.g., the “sozialversicherungsrechtliche Höchst-
beitragsgrundlage”, the Social security maximum contribution base)
would be extracted in its own function.

4.5 Calculations for the Past
If a calculation must be run later on (to check its validity, an appli-
cation coming in the next calendar year, etc.), some concepts need
to know the application date. The previously mentioned “sozialver-
sicherungsrechtliche Höchstbeitragsgrundlage”, like many other law-
mandated values like tax limits, changes over time - but the value
that was valid at the date of application must be used (which could
be a few years in the past), so the function that encapsulates that
concept needs to take the application date into consideration.

10So that an AND over 12 or more unknowns will never becomes a false, etc.

4.6 Input/output type derivation and -checks
The POC implements the expected boolean operators (AND, OR, NOT)
as well as the G4C-specific atoms (like fetching the company legal
form, the place of the headquarter, etc.), and some numeric capa-
bilities. That means that grant descriptions (forms) have different
input and output types:
• AND, OR, NOT only accept boolean (resp. probability) values;
• the numeric operators expect numbers and return numbers;
• the output of data query functions (atomic propositions)
depends on the specific atom.

By using a small set of hard-coded input and output types, the
types of all forms in a grant can be fully derived and checked for
consistency; also, the expected value type of questions (see below)
can be automatically decided and the correct type of HTML input
field11 used in the questioning form. This is one area where having
some extra support from the Common Lisp compiler12 would be
a great plus: a stable, documented function to get the compiler-
derived types of (some) subforms and a list of type mismatches after
compilation. Because some macros are being used13, association to
the source forms might become a challenge, though.

4.7 Interactively asking for Data
Not all data queried by grants is stored in government registers;
other data (in particular personal information, like number of dis-
abled employees) would skyrocket the costs if it was stored persis-
tently; and some items cannot be known in advance (eg., clauses

11Like <input type=text>, type=number, type=date, or radiobuttons.
12not all of them, of course -just one (SBCL) would be enough!
13Most notably for AND and similar, so that intermediate results get stored and associ-
ated to the subform - a function would only receive input values!

ELS 2024 15

Grants4Companies: The Common Lisp PoC ELS’24, May 6–7 2024, Vienna, Austria

;; Im letzten abgeschlossenen Wirtschaftsjahr darf das Einkommen
;; vor Steuern und Sozialversicherungsabgaben maximal
(<= (frage "Einkommen")

(*
;; 80%
0.8d0
;; der jährlichen sozialversicherungsrechtlichen Höchstbeitragsgrundlage
;; betragen (https://www.oesterreich.gv.at/lexicon/H/Seite.991498.html).
(+ (* 12 5370)

;; Sonderzahlung
10740)))

Figure 3: Numeric calculation.

that describe the application itself). To reduce the set of poten-
tially applicable grants it makes sense to ask a (limited) number of
questions regarding the most often used data items.

The POC includes a high-performance evaluation engine for
the grants (see below for details); this allows to recalculate the
applicable set of results for the (planned) set of about 3000 grants
in the backend and send results back to the frontend, interactively.
So when some question gets answered, a quick check with the
back-end allows to shrink the useful set of questions immediately,
reducing the cognitive load on the person using the interface.

As an example, see Fig. 4 for the form before a (too high) number
is put into row 2 (“Anzahl der Kinosäle"); as soon as the number
100 was acknowledged (typically by pressing Tab to get to the next
input field), the form data are sent to the POC, which recalculates
all grants that contain this question and replies with an update
regarding styles (colors) and availability of input boxes - see Fig. 5.
As the given value is too high, the conditions of the grant the data
is used in (here labelled "48") can not be fulfilled any more - so the
label’s background becomes red, and related inputs are immediately
disabled, as there’s no need to answer them any more; if there were
more questions for other grants, the cursor would move to the next
one (done automatically by the browser frontend).

Also, the list of questions is sorted by impact - the more grants’
results a question influences, the sooner it is listed.

4.8 Limited Reasoning - “What If”?
Before a Prolog interface was implemented, the POC got (limited)
exploration capabilities, giving simple “What If?” answers.

As an example, one computation checks whether a grant would
fail to apply because of (parametrized) number of clauses in it (kind
of deduplicated, in case they are used in multiple places in a grant,
like three AND branches all concerned with the ÖNACE and some
other stuff); this allows to check for things like “What do I need to
change to apply for other grants?”.

4.9 Performance
The Common Lisp POC, utilizing SBCL14 on standard x86-64 hard-
ware, compiles the grant forms to native code; for nested loops
over multiple (test) companies and about 30 grants (including fairly
complex ones, see the presentation) the evaluation time averages to
0.5µsec (about 1000 CPU cycles). For ~600000 companies in Austria

14https://sbcl.org

a test cycle in a browser frontend therefore takes less than half a
second, facilitating true interactive grant development.

5 DATA SOURCES
The current sources for data about the companies in the produc-
tion environment are the “Unternehmensregister für die Zwecke der
Verwaltung” and the “Firmenbuch”, a public listing of companies.
These two registers provide general data about the company, but
in order to evaluate certain eligibility conditions other informa-
tion about the company might be required. Querying additional
registers providing this information is ongoing work.

To enable also the evaluation of conditions, for which no data
is available from an official source, in the POC we already drafted
the concept FRAGE (question), which asks data from the company
to answer grant forms (deduplicating questions, and not asking for
data that is irrelevant because it won't be used15.

For the future, we're investigating to add other data sources
as well; most of these will (for legal reasons) require an explicit
consent from the company.

6 EXPERIENCE REPORT
Our experience matches documented history: Common Lisp is
a viable programming language for rapid prototyping. Using it
for production use still proves challenging - the strategic focus of
most companies is still fixed on Java, changing the multi-man-year
lore cannot be done in a day. While there are Prolog libraries for
Common Lisp16, and even one that allows converting Lisp data to
Prolog syntax and forward the result to an implementation17, none
of them completely fulfilled the requirements:
• bidirectional communication,
• parsing the Prolog output to provide a highlighted/clickable
display in the web UI,
• multiple parallel, independent sessions to concurrently test
different analyses,
• ability to export the Prolog input data for use in a separated
(offline), ISO-conformant Prolog system.

15For example, (AND (<some clause that evaluates to false>) (FRAGE "...")) doesn't
need to be asked for this grant – though another grant might require the same data
item and is not always rejected!
16See, e.g., [2], https://www.lispworks.com/documentation/lw445/KW-W/html/kwpro
log-w-152.htm, https://github.com/nikodemus/screamer
17https://github.com/cl-model-languages/cl-prolog2

ELS 2024 16

ELS’24, May 6–7 2024, Vienna, Austria Philipp Marek, Björn Lellmann, and Markus Triska

Figure 4: Interactive queries, before answering.

Figure 5: Interactive queries, after input.

Sowe ended upwith our own implementation, using Scryer Prolog18
as backend. The technical iterations proved to be easy; organisa-
tional/legistic changes (eg., having computer code on an equivalent
legal basis as the grant texts) are hard, and still being worked upon.
The bottleneck for broad usage is the translation from natural lan-
guage to computer code; work takes place to run first translations
via an Artificial Intelligence19. Of course, to get some real legal
weight, a legal spokesperson would need to sign off the translated
computer code; designing processes (re-translating the code to
natural language for easier comparison again, having the sign-off
directly via a GIT commit, etc.) is another required major step
forward. Work continues...

7 CONCLUSION
By using plain text fileswith a reasonably simple syntax it is possible
to translate written law into computer-readable data that’s at the
same time usable as computer code. By using data sources that are
defined to contain valid and up-to-date data, a quick pre-selection
(ie. not showing grants that are known not to apply to a company)

18https://www.scryer.pl
19Efforts driven by the Ministry of Finance under the umbrella Law as Code, though
interest is found on the EU level as well, see https://joinup.ec.europa.eu/collection/bet
ter-legislation-smoother-implementation/news/new-course-law-code.

can be provided to company owners. In the future, the fact-checking
that currently is done manually could possibly be avoided - either
by just providing the available data items in some secure form (a
digitally signed JSON-blob), or by simply signing a statement that
the company matches the requirements, obviating any need for
further checks.

REFERENCES
[1] J. Belzer, A.G. Holzman, and A. Kent. 1978. Encyclopedia of Computer Science and

Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-
Assisted Identification. Taylor & Francis.

[2] Giuseppe Cattaneo and Vincenzo Loia. 1988. A Common-LISP implementation of
an extended Prolog system. SIGPLAN Notices 23, 4 (1988), 87–102.

[3] Lounette M. Dyer. 1986. MUSE: An Integrated Software Environment for Com-
puter Music Applications. In Proceedings of the 1986 International Computer Music
Conference, ICMC 1986, Den Haag, The Netherlands, October 20-24, 1986. Michigan
Publishing, 167–172. https://hdl.handle.net/2027/spo.bbp2372.1986.033

[4] Stephen Cole Kleene. 1952. Introduction to Metamathematics. North-Holland,
Amsterdam.

[5] Björn Lellmann, Philipp Marek, and Markus Triska. 2024. Grants4Companies:
Applying declarative methods for recommending and reasoning about business
grants in the Austrian public administration (System description). In Proceedings
of FLOPS2024 (accepted).

[6] William G. Wong. 1983. LISP for CP/M. Microsystems 4, 8 (1983), 30–43.

ELS 2024 17

An Introduction to Array Programming in Petalisp
Marco Heisig

Sandoghdar Division
Max Planck Institute for the Science of Light

Erlangen, Germany
marco.heisig@mpl.mpg.de

Abstract
Petalisp is a purely functional array programming language embed-
ded into Common Lisp. It provides simple yet powerful mechanisms
for reordering, broadcasting, and combining arrays, as well as an
operator for element-wise mapping of arbitrary Common Lisp func-
tions over any number of arrays.

This introduction covers the process of writing high-performance
array programs in Petalisp and showcases its main concepts and
interfaces. It continues with a simple example of an iterativemethod
and some benchmarks, and concludes with a tour of the Petalisp
implementation and a discussion how it achieves high performance
and a low memory footprint.
ACM Reference Format:
Marco Heisig. 2024. An Introduction to Array Programming in Petalisp. In
Proceedings of the 17th European Lisp Symposium (ELS’24). ACM, New York,
NY, USA, 4 pages. https://doi.org/10.5281/zenodo.11062314

1 Introduction
At the 11th European Lisp Symposium in Marbella we proposed
a lazy, functional array programming language with significant
potential for automatic parallelization. We showed a working pro-
totype and some promising benchmarks that place its performance
somewhere above NumPy and below C++[2]. Our hope was that
this prototype could be quickly extended to cover more sophisti-
cated problems, and to actually reach the performance of C++. This
endeavor turned out to be substantially harder than expected. A
key challenge we had to overcome was that of choosing memory
layouts with good spatial and temporal locality, and to fairly dis-
tribute work across multiple cores. Now, after six years of hard
work, we can finally say we have overcome these problems. We
proudly present the first production-quality version of Petalisp, and
are looking forward to receiving community feedback.

Petalisp is free software.The full source code and many examples
can be found at https://github.com/marcoheisig/Petalisp. It can be
installed withQuicklisp by typing (q l : q u i c k l o a d : p e t a l i s p) .

2 Related Work
Array programming is a discipline with a long history. The first
array programming language was Kenneth E. Iverson’s APL[6],
whose terse notation and productivity benefits inspired a multi-
tude of derivatives. Many recent array programming languages,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, March 06–07, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.11062314

e.g., Repa[7] or Futhark[5], have shifted towards the functional
programming paradigm, but sacrificed some amount of interac-
tivity and dynamism on the way. Petalisp delivers all the benefits
of purely functional programming while retaining the interactive
nature of Common Lisp. A project with a similar goal is the APL
compiler April[8], that also targets Common Lisp.

3 Concepts
There are many approaches to designing a programming language.
The one extreme is the big ball of mud approach, where more and
more potentially competing features are added over time. The other
extreme is to have a minimal set of orthogonal features. Petalisp
pursues the latter extreme: It features only one data structure — the
lazy array, six ways to reorder arrays, one function for combining
arrays, and one function for mapping Common Lisp functions over
any number of arrays.

3.1 Lazy Arrays
All data manipulated by Petalisp is represented as lazy arrays, which
are similar to regular Common Lisp arrays except that their contents
cannot be accessed directly, and that they support a more general
notion of an array shape. Where the shape of a regular array is
defined by its list of dimensions, the shape of a lazy array is defined
by a list of ranges. Each range is a set of integers G defined by an
inclusive lower bound 0, an exclusive upper bound 1, and a step
size B in the following way:

0 ≤ G < 1 (G is bounded by a and b)
B | (G − 0) (B divides (G − 0))
0,1, B, G ∈ Z

Formally, the shape of each lazy array is defined as the Cartesian
product of its sequence of ranges. Informally, this means that lazy
array have a numbering that doesn’t necessarily start from zero,
and that each axis can have holes in it as long as those holes are all
regularly spaced.

Lazy array shapes have their own shorthand notation, which is
a list consisting of tilde symbols and integers. Each tilde must be
followed by one, two, or three integers, describing the size, start and
end, or start, end, and step of the range in the corresponding axis,
respectively. In this notation, a 2× 3 array has a shape of (~ 2 ~ 3) ,
and a vector with step size two and four elements has the shape
(~ 0 7 2) .

Lazy arrays can be created as copies of existing regular arrays
or scalars with the l a z y - a r r a y constructor. All Petalisp functions
use this constructor to automatically convert their arguments to
lazy arrays, so there is usually no need to call it explicitly. For

ELS 2024 18

ELS’24, March 06–07, 2024, Vienna, Austria Marco Heisig

efficiency reasons there exists a second constructor called l a z y -

i n d e x - c o m p o n e n t s for creating lazy arrays whose contents are fully
described by a range and an axis. This second constructor is special
because the resulting lazy arrays have a memory footprint of zero.

3.2 Evaluation
As mentioned in section 3.1, there is no way to access elements
of a lazy array directly. Instead, a user has to convert lazy arrays
into the equivalent regular arrays with an explicit function call.
The main interface for doing so is the function c o m p u t e . It receives
any number of lazy arrays, moves them such that their shapes have
a start of zero and a step size of one, and returns the equivalent
regular arrays.

3.3 Lazy Map
There are only two mechanisms with which Petalisp communicates
with its host language Common Lisp. The first mechanism is the
conversion from Common Lisp arrays to Petalisp lazy arrays and
vice versa. The second mechanism is that of mapping Common Lisp
functions over lazy arrays to obtain new lazy arrays. The higher-
order function for doing so is called l a z y — a rare case of a function
whose name is an adjective. The first argument to l a z y must be a
function 5 of : arguments, followed by : lazy arrays 00, . . . , 0:−1
that are broadcast to have the same shape. The result is a lazy array
A of the same shape as the arguments, whose element at index � is
defined as

A (�) := 5 (00 (�), . . . , 0:−1 (�)) .
Listing 1 illustrates the behavior of l a z y . There is also another

function for lazy mapping called l a z y - m u l t i p l e - v a l u e that can be
used to map functions with multiple return values and gather each
of those values in a separate lazy array.

1 (c o m p u t e (l a z y # ' *))

2 = > 1

3

4 (c o m p u t e (l a z y # ' + 2 3))

5 = > 5

6

7 (c o m p u t e (l a z y # ' + 2 # (1 2 3 4 5)))

8 = > # (3 4 5 6 7)

9

1 0 (c o m p u t e (l a z y # ' * # (2 3) # 2 A ((1 2) (3 4))))

1 1 = > # 2 A ((2 4) (9 1 2))

Listing 1: Examples for using the function l a z y .

3.4 Lazy Reshape
True to the goal of being a minimalist programming language,
Petalisp offers a single function, named l a z y - r e s h a p e , for moving
data. It can be used to select, reorder, or broadcast elements of
a particular lazy array. All its operations can be described as the
superposition of six elementary operations, which are shown in
Figure 1.

(~ 3 ~ 2)

0

0 1

1

(~ 0 3 2 ~ 1 2)

0

0 1

1

22

(~ 3 ~ 1)

0

0 1

1

2

(~ 3 ~ 2)

0

0 1

1

2

(~ 3 ~ 0 3 2)

0

0 1

1

2

2

(~ 3 ~ 1 2)

0

0 1

1

2

(~ 3 ~ 4)

0

0 1

1

2 3

2

(~ 3 ~ 1)

0

0

1

2

select

move scale

(~ 3 ~ 1)

0

0

1

2

0

1

2

(~ 3 ~ 2)

0

0 1

1

2 (~ 2 ~ 3)

0

0 1

1

2

(~ 3)

add/remove
axis

permute
axes

broadcast

Figure 1: The six elementary reshape operations.

The first argument to lazy reshape is the lazy array that is be-
ing reshaped, and all the remaining arguments are so-called modi-
fiers that are processed left-to-right and each describe a particular
combination of elementary operations. One possible modifier is a
shape, in which case the result is a lazy array of that shape and the
modification is a combination of selecting, broadcasting, and mov-
ing of data. Another possible modifier is that of a transformation,
which describes some combination of moving, scaling, permuting,
adding, or removing of axes. Transformations can be created us-
ing a lambda-like syntax with the t r a n s f o r m macro, or using the
m a k e - t r a n s f o r m a t i o n constructor. Examples of the various kinds of
modifiers and their effect are shown in Listing 2

1 (c o m p u t e (l a z y - r e s h a p e # (1 2 3 4) (~ 1 2)))

2 = > # (2)

3

4 (c o m p u t e (l a z y - r e s h a p e # (1 2 3 4) (~ 2 ~ 3)))

5 = > # 2 A ((1 1 1) (2 2 2))

6

7 (c o m p u t e (l a z y - r e s h a p e # (1 2 3 4) (~ 4 ~ 2)))

8 = > # 2 A ((1 1) (2 2) (3 3) (4 4))

9

1 0 (c o m p u t e (l a z y - r e s h a p e # 2 A ((1 2) (3 4))

1 1 (t r a n s f o r m i j t o j i)))

1 2 = > # 2 A ((1 3) (2 4))

1 3

1 4 (c o m p u t e (l a z y - r e s h a p e # (1 2 3 4)

1 5 (t r a n s f o r m i t o (- i))))

1 6 = > # (4 3 2 1)

Listing 2: Examples for using the function l a z y - r e s h a p e .

3.5 Lazy Fuse
The final piece of functionality that makes up Petalisp is that of
fusing multiple arrays into one. The function for doing so is called

ELS 2024 19

An Introduction to Array Programming in Petalisp ELS’24, March 06–07, 2024, Vienna, Austria

l a z y - f u s e . It takes any number of non-overlapping lazy arrays,
determines the shape that covers all these lazy arrays, and returns
the array with that shape that contains all the data of the original
arrays. An error is signaled in case any of the supplied lazy arrays
overlap, or if they cannot be covered precisely with a single shape.

4 The Standard Library
4.1 Moving Data
Shapes and transformations aren’t the only valid modifiers accepted
by l a z y - r e s h a p e . It also accepts modifiers that are functions that
take a shape of the lazy array being mutated, and return any num-
ber of further modifiers as multiple values. These functions are
called reshapers, and they are a generalization of NumPy’s relative
addressing with negative indices. Petalisp features three built-in
functions for constructing reshapers: p e e l e r , for removing some of
the outer layers of a lazy array, d e f l a t e r , for shifting a lazy array to
have a start of zero and a step size of one, and s l i c e r , for selecting
a particular subset of a lazy array using relative indices.

4.2 Reducing
The function l a z y - r e d u c e combines the contents of : arrays with
a function of 2: arguments and : return values. It is an improved
version of the multiple value reduction we presented at the 12th
European Lisp Symposium in Genova[3].

4.3 Sorting
The function l a z y - s o r t constructs a sorting network that sorts the
supplied lazy array along the first axis using some predicate and
optional key.

4.4 Differentiating
The function d i f f e r e n t i a t o r can be applied to a list of lazy arrays
and a list of gradients at those lazy arrays to return a function that
computes the gradient of each input of any of those lazy arrays.
This is achieved by using our type inference Typo to compute
the derivatives of Common Lisp functions. This functionality can
serve as the staring point for writing a machine learning toolkit in
Petalisp.

5 Example: Jacobi’s Method
Listing 3 shows an implementation of a simple numerical scheme
in two dimensions. Although this code is purely functional and has
a very high level of abstraction, our benchmark results in Figure 2
show that it has a multi-core performance that is close to hand-
optimized C++ code, and even outperforms the popular machine
learning framework JAX.

6 The Implementation
Each call to c o m p u t e or any of the other evaluation functions entails
a full run through our optimization and code generation pipeline.
With a careful choice of algorithms, data structures, and caching
schemes, we managed to squeeze the time to execute this entire
pipeline to something on the order of a few hundred microsec-
onds. Because of these extremely fast compilation times we can

(d e f u n l a z y - j a c o b i - 2 d (u)

(w i t h - l a z y - a r r a y s (u)

(l e t ((p (l a z y - r e s h a p e u (p e e l e r 1 1))))

(l a z y - o v e r w r i t e - a n d - h a r m o n i z e u

(l a z y # ' * 1 / 4

(l a z y # ' +

(l a z y - r e s h a p e u (t r a n s f o r m i j t o (1 + i) j) p)

(l a z y - r e s h a p e u (t r a n s f o r m i j t o (1 - i) j) p)

(l a z y - r e s h a p e u (t r a n s f o r m i j t o i (1 + j)) p)

(l a z y - r e s h a p e u (t r a n s f o r m i j t o i (1 - j)) p)))))))

Listing 3: Jacobi’s method on arrays of rank two.

	0

	5x109

	1x1010

	1.5x1010

	2x1010

	2.5x1010

	0 	500000 	1x106 	1.5x106 	2x106 	2.5x106 	3x106 	3.5x106 	4x106

flo
at
in
g-
po

in
t	o

pe
ra
tio

ns
	p
er
	se

co
nd

domain	size	in	bytes

Jacobi	Performance

Petalisp
C	(serial)

C	(omp	dynamic)
C	(omp	static)

NumPy
Jax	(CPU)

Figure 2: Benchmark results for various implementations of
Jacobi’s method.

pretend that Petalisp is an interactive language, yet receive all the
performance advantages of static compilation.

6.1 Data flow graphs
Initially, each Petalisp program is represented as a data flow graph
whose nodes are lazy arrays and whose edges are direct data depen-
dencies.This graph is assembled by invoking Petalisp functions such
as l a z y - r e s h a p e or l a z y - f u s e . Several optimizations are already car-
ried out during graph assembly: consecutive reshape operations are
combined into one, nodes with no effect are discarded, and fusions
of reshape operations that are equivalent to a single broadcasting
reshape are represented as such.

The most important optimization at this stage is to narrow down
the element types of all lazy arrays produced by lazy mapping,
which is a prerequisite for choosing a memory-efficient represen-
tation during execution. To do so, we wrote a portable and ex-
tremely fast type inference library named Typo that is available at
https://github.com/marcoheisig/Typo. Typo can derive the (approx-
imate) return types of almost all standard Common Lisp functions,
and it can rewrite calls to polymorphic functions with specialized
arguments into calls to more specialized functions.

ELS 2024 20

ELS’24, March 06–07, 2024, Vienna, Austria Marco Heisig

6.2 Kernels and Buffers
Once a data flow graph of lazy arrays is submitted for evaluation, it
is converted to the Petalisp intermediate representation, which is a
bipartite graph of kernels and buffers. Each kernel represents some
number of nested loops whose body contains loads, stores, and
function calls. Each buffer represents a virtual memory region. We
developed an algorithm that ensures that most values are produced
and consumed in the same kernel so that the size and number of
necessary buffers is minimal.

Once a program is converted to this intermediate representation,
it is subject to several optimizations: kernels and buffers are rotated
in a way that maximizes memory locality, all shapes and iteration
spaces are normalized to have a starting index of zero and a step size
of one, and buffers that are involved in reduction-like patterns are
eliminated and replaced by additional instructions in the adjacent
kernels.

6.3 Partitioning
The next step in the optimization pipeline is to break up buffers
and the kernels writing to them into shards of roughly equal com-
putational cost, which is a prerequisite for scheduling them onto
parallel hardware. We developed an iterative partitioning algorithm
that minimizes the amount of synchronization and communication.

6.4 Scheduling
The partitioned intermediate representation is fed into our schedul-
ing algorithm, which is a variant of Blelloch’s parallel depth-first
scheduler algorithm[1] with several tweaks that improve memory
locality. Our custom scheduler has several advantages over gen-
eral purpose schedulers: It has full knowledge about the origins of
each load and the users of each store and the partitioning step has
already ensured that all tasks have roughly the same size.

6.5 Allocation
At the end of the scheduling phase, each buffer shard is assigned a
particular memory allocation in the following way: buffer shards
of similar size are all grouped into one bin, and within each worker
and each particular bin, a register-coloring algorithm is used to
assign an allocation to each buffer shard while keeping the total
number of allocations small.

6.6 Code Generation
When executing the schedule, each kernel is converted to an op-
timized Lisp function that is invoked on three arguments: The
iteration space of a kernel shard, the memory corresponding to
each buffer shard, and a vector of all functions that are called in
the kernel. Because kernel compilation is rather costly, each kernel
is first converted to a hash-consed minimal representation that can
be used as a key for caching, and compilation only occurs when a
kernel is invoked for the first time.

We already have code generators for turning kernels into Com-
mon Lisp code and for turning a subset of kernels into C++ or CUDA
code. Right now, our strategy is to use C++ and GCC when possible,
and Common Lisp code otherwise. In the future, we plan to make
the C++ generator obsolete by using SIMD optimized Common Lisp

instead. Doing so would build on our previous work on s b - s i m d that
we presented at the 15th European Lisp Symposium in Porto[4].

7 Conclusions
We presented a data flow programming language that masquerades
as a Common Lisp library for manipulating arrays. The language
stands out by having an extremely simple set of core operations, a
versatile standard library, and a mature implementation. A major
achievement of our implementation is that it can already outper-
form optimized C++ code in certain cases — both in execution time
and memory consumption. In the past, the manipulation of high-
dimensional arrays in Common Lisp has been tedious and often
inefficient. Petalisp addresses this issue thoroughly, and turns Com-
mon Lisp into an excellent tool for all sorts of massively parallel
array programming tasks.

References
[1] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling

for languages with fine-grained parallelism. J. ACM, 46(2):281–321, mar 1999. ISSN
0004-5411. doi: 10.1145/301970.301974. URL https://doi.org/10.1145/301970.301974.

[2] Marco Heisig. Petalisp: A common lisp library for data parallel programming.
In Proceedings of the 11th European Lisp Symposium on European Lisp Sympo-
sium, ELS2018. European Lisp Scientific Activities Association, 2018. ISBN
9782955747421.

[3] Marco Heisig. Lazy, parallel multiple value reductions in Common Lisp. In
Proceedings of the 12th European Lisp Symposium, European Lisp Symposium, 2019.
ISBN 978-2-9557474-3-8. doi: 10.5281/zenodo.2642164. URL https://european-lisp-
symposium.org/static/proceedings/2019.pdf.

[4] Marco Heisig and Harald Köstler. Closing the performance gap between lisp and
c. In Proceedings of the 15th European Lisp Symposium, ELS2022. Zenodo, March
2022. doi: 10.5281/zenodo.6335627. URL https://doi.org/10.5281/zenodo.6335627.

[5] Troels Henriksen. Design and Implementation of the Futhark Programming Lan-
guage. Universitetsparken 5, 2100 København, 11 2017.

[6] Kenneth E Iverson. A Programming Language. John Wiley & Sons, Nashville, TN,
December 1962.

[7] Ben Lippmeier, Manuel Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Guiding parallel array fusion with indexed types. In Proceedings of the 2012 Haskell
Symposium, Haskell ’12, page 25–36, New York, NY, USA, 2012. Association for
Computing Machinery. ISBN 9781450315746. doi: 10.1145/2364506.2364511. URL
https://doi.org/10.1145/2364506.2364511.

[8] Andrew Sengul. April: Apl compiling to common lisp. In Proceedings of the 15th
European Lisp Symposium, European Lisp Symposium. Zenodo, March 2022. doi:
10.5281/zenodo.6381963. URL https://doi.org/10.5281/zenodo.6381963.

ELS 2024 21

Adaptive Hashing
Faster Hash Functions with Fewer Collisions∗

Gábor Melis
melisgl@google.com
Google DeepMind

London, United Kingdom

ABSTRACT
Hash tables are ubiquitous, and the choice of hash function, which
maps a key to a bucket, is key for their performance. We argue
that the predominant approach of fixing the hash function for the
lifetime of the hash table is suboptimal and propose adapting it
to the current set of keys. In the prevailing view, good hash func-
tions spread the keys “randomly” and are fast to evaluate. General-
purpose ones (e.g. Murmur) are designed to do bothwhile remaining
agnostic to the distribution of the keys, which limits their bucket-
ing ability and wastes computation. When these shortcomings are
recognised, the user of the hash table may specify a hash function
more tailored to the expected key distribution, but doing so almost
always introduces an unbounded risk in case their assumptions do
not bear out in practice. At the other, fully key-aware end of the
spectrum, Perfect Hashing algorithms can discover hash functions
to bucket a given set of keys optimally, but they are costly to run and
require the keys to be known and fixed ahead of time. Our main con-
ceptual contribution is that adapting the hash table’s hash function
to the keys online is necessary for the best performance as adaptiv-
ity allows for better bucketing of keys and faster hash functions.
We instantiate the idea of online adaptation with minimal overhead
and no change to the hash table API. The experiments show that
the adaptive approach marries the common-case performance of
weak hash functions with the robustness of general-purpose ones.

CCS CONCEPTS
• Theory of computation→ Data structures design and anal-
ysis; • Information systems→ Hashed file organization.

KEYWORDS
Adaptive, data structure, hash function, hash table, Common Lisp

ACM Reference Format:
GáborMelis. 2024. Adaptive Hashing: Faster Hash Functions with Fewer Col-
lisions. In Proceedings of The 24th European Lisp Symposium (ELS’24). ACM,
New York, NY, USA, 19 pages. https://doi.org/10.5281/zenodo.10991322

∗ . . . Especially in Certain Situations

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 06–07, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.5281/zenodo.10991322

1 INTRODUCTION
Hash tables [13, 20] map keys to values and are one of the most
fundamental data structures. As such, their performance is of con-
siderable interest. For example, Hentschel et al. [8] claimed in 2022
that “a typical complex database query (TPC-H) could spend 50%
of its total cost in hash tables, while Google spends at least 2% of
its total computational cost across all systems on C++ hash tables”.
At that scale, even small gains in this area can have huge impact.
This work aims to provide a general framework to improve the
performance of hash tables in practice. Theory mostly concerns
itself with the unknown key distribution setting and the cost of key
lookup abstracted as the number of key comparisons required. This
approach is highly successful due to its wide applicability and being
a reasonable model asymptotically for a certain class of hash func-
tions. However, practice stubbornly happens in the non-asymptotic
regime with particular key distributions (even concrete keys) on
computers with memory caches. We propose a method to equip
hash tables with the ability to change their hash function based
on the keys being added to improve their overall performance by
bucketing the keys more evenly, making the hash function faster or
more cache-friendly. We are not aware of a cost model that incor-
porates these effects and is amenable to theoretical analysis, hence
this work tilts heavily towards Experimental Algorithmics [14].

It is useful to contrast our method with hand-crafting hash func-
tions for particular key distributions. We argue that hand-crafting is
too rigid: it breaks badly if the distributional assumption is violated
[9, 10]. It is also costly in terms of human labour, and designing
hash functions with guarantees is hard. While selecting the hash
function offline amortizes the design cost, it also attempts to solve
a much harder problem than necessary in balancing the complexity
and the quality of the hash function across all possible sets of keys.

A less rigid solution is to select a hash function online given the
actual keys in the hash table. This pulls the hash function selection
cost into the runtime realm, and we must be extremely cautious of
introducing overhead lest any possible gains be wasted. Here, we
propose hiding some of the selection cost in rehashing, when the
hash table grows. In summary, our main contributions are:
• On the conceptual level, we argue that hash functions must
be able to change during the lifetime of a hash table for best
performance.
• We propose light-weight adaptation mechanism tailored to
string and integer/pointer hashing.
• We empirically demonstrate performance gains in a real-life
hash table implementation.1

1The proposed algorithms were implemented within SBCL [15], a high-quality Com-
mon Lisp. SBCL hash tables are reasonably fast given the constraints of the ANSI
standard [19] but not close to the state of the art. We microoptimized the baseline
SBCL v2.4.2 to make performance comparisons fairer.

ELS 2024 22

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

Algorithm 1 Sketch of a possible adaptation mechanism implemented in
put with low overhead. The unchanged parts of a usual put implementation
are grayed out. The hash function may be adapted when there are too many
keys in the same bucket, or when rehashing finds that the number of colli-
sions is too high. Alternatively, the total cost of access (Definition 2) could
be tracked, requiring an additional write to memory and also a performance
penalty to key deletion.

1: function put(key, value)
2: bucket ← hash(key) mod𝑚
3: chain_length← 0
4: for 𝑘 ← next key in bucket do
5: if (hashes are not cached) or cached_hash(𝑘) = ℎ then
6: if compare(key, 𝑘) then
7: value of 𝑘 ← value
8: return
9: chain_length← chain_length + 1
10: if chain_length too high then
11: ℎ← safer_hash_function(ℎ)
12: bucket ← hash(key) mod𝑚
13: if bucket is full then
14: increase hash table size
15: adapt_and_rehash()
16: if hash function was changed then
17: bucket ← hash(key) mod𝑚
18: add (key, value) to bucket

To ground the exposition, Algorithm 1 sketches the implementa-
tion of the high-level part of a possible adaptation mechanism. In
later sections, we flesh out this skeletal algorithm.

2 THE CASE FOR ADAPTIVE HASHING
In this section, we present the traditional cost model for lookup in
hash tables, which is based on the number of comparisons, then
characterize how much being key-agnostic costs in these terms.

We denote the number of buckets with𝑚, the number of keys
with 𝑛, the keys (assumed to be integers) with 𝑘 , hash values with
ℎ ∈ N0, buckets with 𝑏 ∈ [0,𝑚 − 1], and say that hash ℎ falls into
bucket 𝑏 if ℎ mod𝑚 = 𝑏. We often refer to vectors of certain sizes,
e.g. of hashes, with notation like ℎ1:𝑛 .

Definition 1 (Bucket Count). For a given set of hash values ℎ1:𝑛 and
𝑚 buckets, we denote the bucket count vector with 𝑐 (ℎ1:𝑛,𝑚) ∈ (N0)𝑚 ,
where 𝑐 (ℎ1:𝑛,𝑚)𝑏 = |{𝑖 : 𝑖 ∈ [1, 𝑛], ℎ𝑖 mod𝑚 = 𝑏}| is the number of
hashes falling into bucket 𝑏, for all 𝑏 ∈ [0,𝑚 − 1].

Next, we define the cost of hash values at a given number of
buckets to be the expected number of comparisons one has to make
to find the value associated with a key present in the hash table.
For a single bucket with 𝑐𝑏 hashes, this is (𝑐𝑏 + 1)/2 assuming a
uniform distribution over the keys being looked up.

Definition 2 (Cost of Hashes). The cost of hashes ℎ1:𝑛 with 𝑚
buckets is 𝐶 (𝑐) = 𝑛−1 ∑𝑚−1

𝑏=0 𝑐𝑏 (𝑐𝑏 + 1)/2, using the shorthand 𝑐 =
𝑐 (ℎ1:𝑛,𝑚).
Note that this definition differs from hash function quality in the
Dragon Book [1] only in the normalization.

We define perfect hashes as those that fill all buckets as equally as
possibile. This generalizes the classic definition [7], which requires
no collisions, to the space-restricted setting of𝑚 < 𝑛.

Definition 3 (Perfect Hash). We say the hashes ℎ1:𝑛 are perfectly
distributed in𝑚 buckets if𝑚−(𝑛 mod𝑚) buckets have ⌊𝑛/𝑚⌋ hashes
in them, and 𝑛 mod𝑚 buckets have ⌊𝑛/𝑚⌋ + 1 hashes in them.

Proposition 4. [Perfect Hashes have Minimal Cost] Let𝑈 (𝑛,𝑚) be
the bucket count vector of any perfect hash of 𝑛 keys and𝑚 buckets.
Let 𝑞 = ⌊𝑛/𝑚⌋ and 𝑟 = 𝑛 mod𝑚. Then,

𝐶 (𝑈 (𝑛,𝑚)) = (𝑚 − 𝑟)𝑞(𝑞 + 1)2𝑛 + 𝑟 (𝑞 + 1) (𝑞 + 2)2𝑛 ,

and this cost is minimal.

For the proof of this and other propositions, see Appendix A.
In the illustrative special case of an integer load factor 𝑛/𝑚, we

have that 𝑛 = 𝑞𝑚 (i.e. 𝑟 = 0), the counts will be the same for all
buckets, and 𝐶 (𝑈 (𝑛,𝑚)) =𝑚𝑞 (𝑞+1)

2𝑛 = 𝑞+1
2 .

Since perfect hashes have minimal cost, we define the regret of
a hash the excess cost over that.

Definition 5 (Regret of Hashes). The regret of hashes ℎ1:𝑛 is

𝑅(ℎ1:𝑛,𝑚) = 𝐶 (𝑐 (ℎ1:𝑛,𝑚)) −𝐶 (𝑈 (𝑛,𝑚)).
Note that the classic cost model in Definition 2 is simple but

clearly wrong if hashes of keys are cached (see Algorithm 1) because
it costs one memory access to look up the cached hash for a key,
but the cost of key comparison may be much higher. Still, with
random hashes of many bits, this distinction becomes moot for
regret because only one cached hash is likely to match, so there will
be a single comparison for each lookup, and their contributions to
𝐶 (𝑐 (ℎ1:𝑛,𝑚)) and𝐶 (𝑈 (𝑛,𝑚)) cancel out. Thus, with cached hashes,
the regret can be interpreted to be in terms of memory access.

Hash functions strive to be indistinguishable with reasonable
effort from a uniform hash [5], which assigns each key to a bucket
with uniform probability, whose cost we consider next.

Proposition 6. [Expected Cost of the Uniform Hash] Let 𝑃 be a
uniform distribution over functions that map keys to buckets. Then,

E
𝜋1:𝑛∼𝑃

𝐶 (𝑐 ([𝜋1 (𝑘1), . . . 𝜋𝑛 (𝑘𝑛)],𝑚)) = 1 + 𝑛 − 12𝑚 ,

where 𝜋1:𝑛 are 𝑛 independent samples from 𝑃 .

The uniform hash is optimal among hashes that are functions
of a single key. However, its cost is clearly worse when compared
to a perfect hash, which can be viewed as having knowledge of
all keys. Next, we characterize its regret, assuming that𝑚 | 𝑛, for
convenience.

Proposition 7. [Expected Regret of the Uniform Hash] For all load
factors 𝑞 ∈ N (𝑛 = 𝑞𝑚), the expected regret of the uniform hash is
0.5 + 1

𝑚 .

So, the uniform hash needs about one extra comparison per two
lookups compared to a perfect hash because it does not take all the
keys into account. That’s not good but not terrible either. It may
be worth improving, especially if the hash function can be made
faster at the same time.

ELS 2024 23

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

Algorithm 2 Hashing strings with a limit on the number of characters
taken into account. The algorithm moves inwards from the two ends of
the string because those tend to be the most informative and because this
scheme can be easily extended to reuse a previously computed hash with
a lower limit. The function add_char performs one step of the FNV-1A
algorithm.

1: function hash_string(𝑠 , limit)
2: ℎ← len(𝑠) ⊲ Initialize the hash to the length
3: 𝑎, 𝑏 ← 0, len(𝑠) − 1
4: 𝑛← min(limit, 𝑙)
5: while 𝑎 < (𝑛 ≫ −1) do
6: ℎ ← add_char(ℎ, 𝑠 [𝑎])
7: ℎ ← add_char(ℎ, 𝑠 [𝑏])
8: 𝑎, 𝑏 ← 𝑎 + 1, 𝑏 − 1
9: if 𝑛 mod 2 = 1 then ⊲ Add the odd middle character
10: ℎ ← add_char(ℎ, 𝑠 [𝑎])
11: return ℎ

3 HALF AN EXAMPLE
In related work, Hentschel et al. [8] engage with one half of this
problem: they select high-entropy parts of the key to feed to a
general-purpose hash function. Their approach can speed up the
hash function but cannot reduce the expected number of collisions.
Crucially, once a hash function has been learned in an offline man-
ner for a given key distribution, it remains fixed for the lifetime
of the hash table. In a similar vein but adapting the hash function
on the fly, we demonstrate significant speedups on string hashing
even with slightly more collisions.

In particular, we hash only a subset of the data in compound keys,
where the size of the subset is subject to a dynamically adjusted
limit. In case of string keys, we limit the number of characters
hashed. Hashing proceeds inwards alternating between taking a
character from the beginning and the end of the string. The al-
gorithm (FNV-1A [21]) is initialized with the length of the string
to cheaply introduce some information about the truncated away
characters into the hash. See Algorithm 2 for the code listing.

To detect overly severe truncation, we track the maximum chain
length. That is, when a new key is being inserted whose hash is
computed with truncation (e.g. it’s a string longer than the current
limit), we check the number of keys already in its bucket. If the
probability of that many keys having collided with the uniform hash
(without truncation) is less than 1%, we double the limit and rehash.
Since hashes of strings are expensive to compute, they are cached
(see Algorithm 1, Section 2, and Appendix C). By compromising the
hash function’s quality, we run the risk of having to perform more
comparisons, which can be costly, thus, it is important to have a
tight limit on the chain length, which we achieve by precomputing
them for all possible power-of-2 bucket counts at load factor 1 and
changing the current limit when the hash table is resized.

If after this rehash, the number of collisions is significantly higher
than would be expected with the uniform hash, then we double the
limit again and rehash. This procedure repeats until there are no
more keys with truncated hashes2 or the number of collisions falls
near the expected level (see Appendix B).

2We use the highest bit in the hash to indicate truncation.

21 24 27 210 213 216
0

0.2

0.4

number of keys

re
gr
et

Uniform
SBCL
Adaptive

Figure 1: Regret (Definition 5) with string keys. Adaptive
does not gain or significantly compromise on regret. Points
where the truncation limit changes vary between runs.

21 24 27 210 213 216

26

27
ns

/p
ut

SBCL
Adaptive

Figure 2: PUT timings in nanoseconds with string keys. Note
the log scales. The plot shows the average time for inserting
a new key when populating an empty hash table with a given
number of keys.

21 24 27 210 213 216

26

27

ns
/g

et

SBCL
Adaptive

Figure 3: GET timings with string keys.

3.1 Experiments with String Keys
We implemented the adaptive hash algorithm by changing SBCL’s
standard equal hash tables3. Then, we collected all different strings
present in the running Lisp, which gave us about 40 000 keys and
measured the time it takes to populate hash tables from an empty
state, averaging over same-sized random subsets of the keys. We
partitioned the range of possible key counts into maximally large
segments within which the hash table internal data structures are
3Common Lisp’s equal is like Java’s .equals(): it compares two objects by value.

ELS 2024 24

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

not resized and measured performance with the lowest and highest
possible key count in each segment. We also measured the time it
takes to look up an existing key (GET), to look up a key not in the
hash table (MISS), and to delete an existing key (DEL). All reported
times are in nanoseconds per operation (e.g. insertions for popu-
lating the table, lookups for GET). For details of the experimental
setup see Appendix F.

Figures 1 to 3 show our results. The jaggedness of the lines is
the effect of hash table resizing. At smaller sizes, the gains are
considerable and similar to those in Hentschel et al. [8]. With the
current implementation, the performance of the adaptive method
eventually falls back to the baseline (unmodified SBCL) because the
max-chain-length check in Algorithm 1 gets triggered by strings
that share a long common prefix and suffix, pushing the truncation
limit beyond the length of most keys.

Note that a more advanced implementation could reduce the
overhead of rehashing by starting Algorithm 2 from the hash value
producedwith a lower 𝑙𝑖𝑚𝑖𝑡 and only hashing the characters beyond
that.While this would help PUT results a bit, GETwould not benefit.
The more fundamental problem is that max-chain-length is a really
loose indicator of the cost, and we should track the regret instead.

3.2 Experiments with List Keys
The solution used in the string case also works for lists with a
small modification, which is another common type of key in equal
hash tables. Since lists are not random-access, we only consider
their prefixes (unlike Algorithm 2, which also includes suffixes of
strings). At least since the year 2000, stock SBCL has truncated
list keys to length 4 to avoid stack exhaustion in case its recursive
hashing algorithm is invoked on a circular key. This value might
have been chosen empirically to maximize performance, or user
code has adapted to this limitation even if the root cause of the issue
remained unrecognised, or both. Regardless, we found that a default
limit of 4 worked best. From this default, the limit is increased as
collisionswarrant, as in the string case. So, the practical gains for the
adaptive method may be limited to cases where crucial bits in keys
are put unknowingly beyond length 4. Curiously, there are two such
cases in SBCL’s own test suite (arith-combinations.pure.lisp and
save4.test.sh), which experience a disastrous number of collisions
and are sped up by 60% when the adaptation mechanism increases
the truncation length.

4 INTEGER AND POINTER KEYS
Section 2 indicates that it may be possible to improve the regret
by adapting the hash function to the keys on the fly, but whether
there is a practical implementation of adaptation – which covers a
non-trivial set of workloads and is lightweight enough to benefit
overall performance – remains to be demonstrated.

In the previous section, we showed an example of how to reduce
the complexity of the hash without increasing the number of colli-
sions too much. In this section, we instantiate the general idea of
adaptive hashing on the problem of hashing integer and pointer
keys [11]. In this case, we will consider reducing the number of col-
lisions at the same time as speeding up the hash function, requiring
more than a passing familiarity with the key distribution.

4.1 Perfect Hashing on Arithmetic Sequences
First, we consider the idealized case of adding keys to a power-
of-2 hash table from an arithmetic sequence of integers in order.
Let 𝑎𝑖 = 𝑎0 + 𝑖𝑑 for all 𝑖 ∈ [1, . . .], where 𝑎0 is the offset and 𝑑
is difference between successive elements. a perfect hash here is
ℎ𝑖 = ⌊𝑎𝑖/𝑑⌋ = ℎ0 + 𝑖 , but this requires division by an arbitrary
constant 𝑑 , which is slow on current hardware.

Since the number of buckets𝑚 is a power of 2, as long as 𝑑 is
odd, any finite progression in 𝑎 will be perfectly distributed modulo
𝑚 because 𝑑 and𝑚 are coprime. Let 𝑠 be the largest integer such
that 2𝑠 | 𝑑 . Then ℎ𝑖 = ⌊𝑎𝑖/2𝑠 ⌋ is an arithmetic sequence with odd
increment 𝑑/2𝑠 , thus perfectly distributed. So, if we know 𝑠 , we can
use the perfect hash function 𝑘 → 𝑘 ≫ 𝑠 with a single arithmetic
shift. Less regular than arithmetic sequences are the addresses of
sequentially allocated objects, which we consider next.

4.2 Page-Based Memory Allocators
If keys are memory addresses (e.g. pointers to objects), then we
may be able to take advantage of how the allocator works. We
consider the case of page-based allocators, which first allocate
contiguous memory ranges called pages from the OS. From these
pages, they are then able to allocate objects much more quickly. To
decrease contention, pages are often assigned to individual threads.
A thread may have multiple pages assigned to it, in which case it
may choose between pages based on the allocation size. In particular,
TCMalloc allocates pages of 8KB by default and has allocations of
roughly the same size within the same page. SBCL, a Common Lisp
implementation with a moving garbage collector (GC), has two
32KB pages per thread: one for conses (whose size is two machine
words), and another for all other objects4.

Under such allocators, if the hash table keys are of the same size
and are allocated in a tight loop, we can expect to have roughly
arithmetic progressions in terms of addresses. But only roughly
because with TCMalloc there may be holes (that belonged to pre-
viously freed objects) on the page, which may be filled in a more
irregular pattern, and when a page is full, the new page may be
anywhere in memory. With SBCL, pages have no holes because
allocation within a page is simply a pointer bump5 and because
the GC compacts. When there is not enough room left on the cur-
rent page or GC happens, the allocator gets a new page, but the
addresses of subsequent pages are much less regular than the ad-
dress within pages. A further complication with SBCL is that there
are no separate pages for objects of different sizes, so if objects
of non-constant sizes are allocated between subsequent keys, that
throws regularity off and may reduce the density of addresses of
keys within the page.

In summary, to the extent that addresses of keys are distributed
like elements of pure arithmetic progressions, their hashes can be
improved. We leverage the following properties:
• denseness: many keys are allocated on the same page,
• alignment: the power-of-2 alignment of keys is constant
(especially within a single page).

4This is a simplification. Some platforms also have immobile space, arenas, and “large”
objects are handled specially.
5The address of the next object is the address of the previously allocated object plus
its size aligned to a double word boundary.

ELS 2024 25

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

Algorithm 3 Detecting common low bits in integer keys (e.g. pointers
from page-based allocators) 𝑘1, . . . 𝑘𝑛 . This is to find the largest power-of-2
factor of the common difference in an arithmetic progression regardless of
the offset caused by the first term. The symbols ∨, ⊕, ¬ denote the bitwise
OR, XOR and NOT operations. Note that count_leading_zero_bits is often a
single assembly instruction such as LZCNT on x86.

1: function count_common_prefix_bits(𝑘1, . . . , 𝑘𝑛)
2: mask← 0 ⊲ Changed bits detected so far.
3: for 𝑖 ← 2 to 𝑛 do
4: mask ← mask ∨ (𝑘1 ⊕ 𝑘𝑖)
5: return count_leading_zero_bits(¬mask)

4.3 Detecting Common Power-of-2 Factors
We need to detect 𝑠 in the factor 2𝑠 common to all keys fast and
safely. Fast because this will be done at runtime, and safely because
using an overestimation of 𝑠 in e.g. the Arithmetic hash 𝑘 → 𝑘 ≫ 𝑠
can discard valuable bits and lead to a disastrous number of colli-
sions, which must then be detected and corrected by the another
change to the hash function (see Algorithm 1 and Algorithm 4).

Algorithm 3 is designed to fulfil these requirements. It is ex-
tremely light, performing about 2 bitwise assembly instructions
per key, over only a subset of keys to limit memory access. Also, it
detects the common factor without assuming that the sequence is
arithmetic, which makes it applicable in more circumstances.

As to safety, if we have𝑛 keys, then the probability of a bit appear-
ing constant by chance is 21−𝑛 (assuming that bits are Binomial(0.5)
in the hash values). Thus, in practice, we can detect constant low
bits with high probability with as few as 8-16 keys. We use the
detected shift 𝑠 in the following three hash functions.

4.4 The Arithmetic Hash
The Arithmetic hash function is 𝑘 → 𝑘 ≫ 𝑠 , where 𝑠 ∈ N0. As
discussed in Section 4.1, this is a perfect hash function for arithmetic
progressions.

4.5 The Pointer-Mix Hash
The Arithmetic hash function can easily have high cost if, for ex-
ample, pointers on multiple pages come from the same smallish
subset on each page.

Our next hash function, Pointer-Mix, combines the Arithmetic
hash𝑘 ≫ 𝑠 with a general purpose hash of the page address𝑘 ≫ PB,
where PB is the base 2 logarithm of the allocation page size in bytes.
The Pointer-Mix hash function is𝑘 → 𝑘 ≫ 𝑠⊕safe(𝑘 ≫ PB), where
⊕ is the bitwise XOR operation, and safe() is a general purpose
hash function such as Murmur3.

Next, we characterize its regret in the setting discussed in Sec-
tion 4.2, when keys are allocated in a tight loop but do not fit on a
single page. The keys are pointers to objects distributed uniformly
between multiple pages and within pages form subsets of values of
arithmetic sequences of the same increment.

Proposition 8. [Expected Cost of Pointer-Mix] Let 𝑘1:𝑛 be integer
keys, and P = {𝑘𝑖 ≫ PB : 𝑖 ∈ [1, 𝑛]} the set of pages (the high bits of
keys). Let the keys be distributed over the pages uniformly, 𝑛 = |P |𝑢,
where 𝑢 is the number of keys on the same page (𝑢 = |{𝑖 : 𝑘𝑖 ≫
PB = 𝑝}| for all pages 𝑝 ∈ P). We assume that all 𝑢 keys on the

same page form random subsets of arithmetic progressions with page
specific offsets but the same increments. Then, the expected cost of the
Pointer-Mix hash function is

1 + 𝑛 − 𝑢min(1, 2PB−𝑠𝑚)
2𝑚 .

See Appendix A for the proof.
This cost is upper bounded by that of the uniform hash (Proposi-

tion 6), 1+𝑛−12𝑚 , and we can see that with a few densely packed pages,
we can get reasonable improvements, which diminish quickly with
more pages and sparsity. Meanwhile, at the single-page extreme
(𝑢 = 𝑛 ⩽ 𝑚), Pointer-Mix is a perfect hash.

4.6 The Pointer-Shift Hash
We have seen that as the number of pages grows, Pointer-Mix
quickly falls back to the performance level of the uniform hash. It
is also slow: it includes a general purpose hash.

In practice, we found that the Pointer-Shift hash 𝑘 → 𝑘 ≫
𝑠′ + 𝑘 ≫ PB often outperforms Pointer-Mix. Furthermore, it also
behaves rather similarly to the Arithmetic hash if 𝑠′ and 𝑃𝐵 are not
close in value. To avoid degenerating to 𝑘 → 2𝑘 ≫ PB at 𝑠 = PB, 𝑠′
is set to a large value in this case to zero out the first term without
introducing a slow conditional.

4.7 The Constant Hash
The hash functions discussed up to now are adaptive as they all
involve the shift 𝑠 detected from the keys. A different kind of adap-
tation, based the number of keys but ignoring their values is also
possible. We mirror the common practice of starting with an array
plus linear search and switching to a hash table above a predefined,
small number of keys but hide it behind the hash table API and
utilize it when the comparison function is extremely light as is the
case with integer / pointer hashing. This may also be viewed as as
a Constant hash with a specialized implementation or a hash table
with only one bucket.

4.8 Other Hashes
Stock SBCL comes with the Prefuzz hash function, which was de-
signed by hand and performs well empirically in many situations.
Naturally, Prefuzz takes advantage of the memory allocation pat-
terns to make common use-cases fast (e.g. symbol keys, frequently
used in the compiler), but it does so at the expense of extreme
penalties to others.

The Murmur3 mixer function is a fast, widely used, general-
purpose, non-cryptographic hash function with strong mixing prop-
erties. Its bucket distribution is very close that of the uniform hash.

4.9 Adapting the Hash Function
We implemented the above hash functions in SBCL and modified
its hash table implementation to perform adaptation with pointers
and integers. So, we use Common Lisp’s eq hash tables, whose
comparison function is based on object identity (i.e. it compares
the address of non-immediate objects, or the value of immediate
objects such as integers that fit into a machine word) similarly to
the == operator in Java.

ELS 2024 26

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

Algorithm 4 Adapting the hash function in eq (i.e. object identity based)
hash tables at rehash. Note that we count collisions with Prefuzz only
at larger sizes; otherwise it adapts only through the max-chain-length
mechanism (see Algorithm 1) to reduce the overhead. We refer to this
algorithm as Co+PS>Pr>Mu when comparing minor variations.

Require: Integer/pointer keys 𝑘𝑖 (𝑖 ∈ [1, . . . , 𝑛]), doubled number
of buckets𝑚, current hash function ℎ.

1: procedure adapt_and_rehash_eq
2: if h = constant_hash then
3: if m = 64 then
4: 𝑠 ← count_common_prefix_bits(k1:10)
5: ℎ← pointer_shift
6: if ℎ = pointer_shift then
7: n_collisions← rehash(𝑚,ℎ, count_collisions = True)
8: if n_collisions is too many then
9: ℎ← prefuzz
10: if ℎ = prefuzz then
11: if 𝑚 < 2048 then
12: rehash(𝑚,ℎ)
13: else
14: n_collisions← rehash(𝑚,ℎ, count_collisions = True)
15: if n_collisions is too many then
16: ℎ← murmur3
17: if ℎ = murmur3 then
18: rehash(𝑚,ℎ)

The adaptation mechanism for eq hash tables (Algorithm 4)
fleshes out Algorithm 1 and works as follows. Hash tables are initial-
ized with the Constant hash, which remains in effect until the num-
ber of keys exceeds 32. At that point, count_common_prefix_bits
determines the shift 𝑠 to use, and we switch to the Pointer-Shift
hash function. Whenever rehash finds that there are significantly
more collisions than would be expected with a uniform hash (see
Appendix B), the hash table switches to Prefuzz.

We also need to fall back on Murmur3 in case Prefuzz produces
too many collisions. However, because Prefuzz is somewhat robust
and considerably faster than Murmur3, we count collisions only
at larger sizes to reduce the adaptation overhead6 and otherwise
rely on the max-chain-length mechanism from Algorithm 1 to fall
back on the next safer hash function (in the order they appear in
𝑎𝑑𝑎𝑝𝑡_𝑎𝑛𝑑_𝑟𝑒ℎ𝑎𝑠ℎ_𝑒𝑞 in Algorithm 4) if the key being inserted falls
into a bucket with at least 14 other keys7. Using the tighther limit
from Section 3 would be too costly for eq hashing. See Appendix D
for the more details.

In summary, we have two ways of detecting when the current
hash function is likely suboptimal: tracking collisions at rehash and
chain length at insertion. We use collision tracking to catch gradual
degradations of performance, and max-chain-length to catch cata-
strophic failures in a single bucket. One can construct lower and
upper bounds on the average cost of lookup based on the collision

6The overhead is that of incrementing a single counter if the bucket in index-vector
is not zero, which is a hard to predict branch for the CPU.
7With a uniform hash, the probability of the maximum chain length being at most 14
is higher than 99% for all possible hash table sizes.

21 26 211 216 221 226
0

0.2

0.4

0.6

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 4: Regret with FIXNUM :PROG 1. Murmur closely tracks
Uniform. Prefuzz is aggressively optimized for small sizes.
Adaptive (Algorithm 4) is a perfect hash here. Both Co+Pr
(Constant followed by Prefuzz) and Adaptive use the Con-
stant hash until the fixed switch point at 32 keys (black dot).

21 26 211 216 221 226

25

26

27
ns

/p
ut

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 5: PUT timings with FIXNUM :PROG 1. Prefuzz outper-
forms Murmur even at large sizes despite higher regret be-
cause it’s friendlier to the cache (its collisions are between
subsequent elements of the progression), and its combination
with Constant is even faster. Thus, despite being a perfect
hash, Adaptive can improve on them only marginally.

21 26 211 216 221 226
23

25

27

ns
/g

et

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 6: GET timings with FIXNUM :PROG 1. Keys are queried
in random order so regret matters more here than with PUT,
but the cache-friendliness of Prefuzz still keeps it ahead of
Murmur. As expected, Adaptive can finally benefit from its
zero regret after the Constant hash phase.

count and max-chain-length. Neither of these mechanisms are per-
fect, but they work quite well in tandem to inform the adaptation
logic about the cost of lookup.

ELS 2024 27

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

21 26 211 216 221
10−3

100

103

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 7: Regret with FLOAT :PROG 1. To be able to plot the
catastrophic failure of Prefuzz (and of Co+Pr, consequently),
we use log scale for regret on this graph. Single floats are es-
pecially problematic for Prefuzz because they can have many
constant low bits. Adaptive detects these constant low bits
and does better than Uniform until variation in the floating
point exponents makes its original estimate of the number
of constant low bits invalid, and the resulting gradual in-
crease in collisions makes it switch to Prefuzz at rehash time.
This is a spectacularly bad idea in this scenario, and the high
number of collisions causes an immediate switch to Murmur.
The switch times vary by hash table because the key sets are
generated starting from random offsets.

Both the collision count and max chain length are proxies for
the cost of lookup as defined in Definition 2, which in turn is a
proxy for performance that ignores important factors such as cache
effects. Thus, even if adaptation can be driven by proxy statistics,
there is no way around actually measuring performance directly.

4.10 Microbenchmarks
We conducted experiments on SBCL’s eq hash tables with various
hash functions, hash table sizes, integer and pointer keys. Our
experimental methodology is the same as in Section 3.1 except
for how keys are generated, which we briefly describe below (see
Appendix F for the details). In the experiments, Co+Pr starts with
the Constant hash and switches to Prefuzz above 32 keys. Adaptive
behaves as described in Algorithm 4.
• (FIXNUM :PROG 1) The first experiment is with fixnums8 fol-
lowing an arithmetic progression with increment 1 (denoted
by :PROG 1). As Figure 4 shows, the regrets of Murmur and
Uniform are very close, as expected. Prefuzz seems to be ag-
gressively optimized for small hash table sizes, and Adaptive
is a perfect hash in this simple scenario. However, differences
in regret do not predict actual performance well, which is
most visible in Figure 5, where insertion is much faster with
Prefuzz than with Murmur even where the latter has much
smaller regret. This is because the collisions with Prefuzz
are between keys close in insertion order, which benefits the
CPU’s cache. The same effect is present in lookups (Figure 6),
although to a lesser degree because the benchmark looks up

8A fixnum is a signed integer in Lisp that fits into a machine word. It’s similar to an
int64 on x86-64.

21 26 211 216 221 226
0

0.2

0.4

0.6

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 8: Regret with FIXNUM :PROG 12. Murmur closely tracks
Uniform, but Prefuzz is better across almost the whole range.
Arithmetic (Section 4.4) would be a perfect hash here, but
Adaptive, which uses Pointer-Shift (Section 4.6), is not quite
perfect due to the interference of its 𝑘 ≫ PB term.

keys in random order, so some random access to memory is
inevitable. See Appendix I for the full set of results.
• (FLOAT :PROG 1) Similar to the previous fixnum case, we also
tested single-float keys. As the regret curves in Figure 7
show, Prefuzz suffers a catastrophic failure, placing most
keys in the same bucket, but Adaptive takes advantage of
the many constant low bits in the keys, eventually falling
back to Prefuzz and then to Murmur. See Appendix J for the
full set of results.
• (FIXNUM :PROG 12) Next, we tested arithmetic progressions
with increment 12. This is intended to test whether the shift
detection in Algorithm 3 works. The regret curves in Figure 8
and the operation timings tell a similar story as with :PROG
1 except that Adaptive is no longer a perfect hash due to
Pointer-Shift’s 𝑘 ≫ PB term. See Appendix K for more.
• (FIXNUM :RND 6) Like :PROG 6, but keys follow a random
progression: 0–5 values are skipped randomly between sub-
sequent keys. This is intended to approximate populating a
hash table with non-uniformly sized keys or values being
allocated in a tight loop. Results in Appendix L shows that
Prefuzz is better than Murmur, and the large gains made by
the Constant hash persist, but with less structure and more
noise in the key sets, Prefuzz is becoming harder to beat.
• (CONS :RND 6) Similar to FIXNUM :RND 6, but we allocate
real cons objects. See Appendix M for the results.
• (SYMBOL :EXISTING) Finally, we explore the case where keys
are not allocated a tight loop that populates the hash table
by using the set of existing symbols from Lisp as keys. Ap-
pendix N shows that despite the scarcity of structure in the
key distribution, Prefuzz maintains a small advantage over
Murmur. As expected, Co+Pr and Adaptive follow in suite,
most of their advantage being in the Constant hash phase.

In all results presented, the Co+Pr and Adaptive hash functions,
which both start out with the Constant hash, gain a lot of perfor-
mance on insertion but lose on lookups. This is still an overall win
based just on the numbers presented here except in very lookup-
heavy workloads. However, an even larger unquantified benefit is in

ELS 2024 28

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

the reduced memory usage and garbage collection times due to the
Constant hash having a specialized single vector implementation.

In summary, a general-purpose hash such asMurmur is a safe but
suboptimal choice for many common situations in eq hash tables.
SBCL’s own Prefuzz hash is hand-crafted for these common situa-
tions, on which it is difficult to beat. Still, because it is non-adaptive,
it sacrifices performance in other cases and has terrible worst-case
behaviour. Our adaptive approach combines the worst-case safety
of Murmur with the common case performance of Prefuzz. The
adaptive approach even manages to slightly outperform Prefuzz
because having the reliable safety net of the fallback mechanism
allows it to be more aggressive in catering to the common case.

4.11 Macrobenchmarks
Microbenchmarks are useful indicators of the highest achievable
throughput, but their results do not necessarily carry over to more
complex workloads, where factors such as code size and complexity
gain importance. To investigate this issue, we conducted experi-
ments where hash table operations constitute only a small fraction
of the workload. In particular, we measured the times to

(1) compile and load a set of libraries;
(2) run the tests of the same set of libraries;
(3) run each test file in SBCL’s tests/ directory.
Appendix G has the detailed results; here, we only provide a

summary. Among the three benchmarking suites, the first one is
the heaviest on eq and equal hash table operations. With SBCL’s
statistical profiler, we estimated that about 1.7% of the total runtime
was spent in small eq hash tables (that is, within Constant hash’s
range of 0–32 keys) and 1.3% in larger ones, while operations on
equal hash tables took 1%. The relative speedup was 8% in the large
eq case and 50% for equal. The gain in the small eq case is harder
to pin down because Constant hash’s significantly reduced garbage
collection cost; we estimate it to lie in the 8%–14% range.

In the second suite, small/large eq and equal hash table op-
erations constituted 0.55%, 0.25% and 0.3% of the baseline result.
Relative gains were as previously except for the large eq case, pos-
sibly because our benchmarking methodology is not able to detect
differences so small, or because the increased code size is not worth
it in code paths so cold.

Finally, we timed SBCL tests on a per-file basis and found no ma-
jor performance regressions. Overall, we observed a 0.7% gain due
to adaptive eq hashing, with adaptive equal hashing contributing
another 1.5%, which came almost exclusively from the two tests
with longer list keys (see Section 3.2).

In summary, by surviving the difficult transition from hot-path
microbenchmarking to the cooler workloads reported in this sec-
tion, adaptive hashing emerges as a method of practical relevance.

5 RELATEDWORKS
Our method takes inspiration from Perfect Hashing, which selects
a hash function for a given set of keys (known as static hashing). As
its name implies, Dynamic Perfect Hashing [3, 6] allows the set of
keys to change but still guarantees worst-case constant lookup time.
However, it requires more memory than plain hash tables, so it is
not a drop-in replacement for them. Cuckoo hashing also has worst-
case constant lookup time but with a lower memory footprint. In a

sequential implementation, it requires 1.5 hash function evaluations
and memory accesses on average per lookup, which is about what
the uniform hash has at load factor 1 (see Proposition 6).

Probably Dance [16], Rabbit Hashing [17] use the maximum
probe length to decide when to grow the hash table or reseed the
hash function but, unlike our adaptive method, they do not change
its functional form, nor do they select the hash function to fit a
given set of keys (see Algorithm 3).

VIP hashing [12]moves themore frequently accessed keys earlier
in the collision chains to reduce the average lookup cost. Since
adapting to the key access distribution is performed online, this
method also needs to take extreme care to minimize overhead. In
contrast to our work, they perform online adaptation of the hash
table internal storage layout but leave the hash function constant.

Hentschel et al. [8] propose a method to learn the hash function
offline from samples of the key distribution by using the most
informative parts of compound keys. Our case study on string keys
in Section 3 can be seen as an online version of their method, with
the expensive learning phase removed.

In the taxonomy of Chi and Zhu [4], adaptive hashing falls under
data-dependent hashing although they assume that the training is
performed offline. The adaptive hashing method can also be viewed
as a more robust, key-aware version of user-defined hash functions,
which are also adapted offline to a particular key distribution.

There is a history of handcrafted hash functions that perform
well in common cases, but exhibit spectacular failures in others.
As we have seen, Prefuzz in SBCL is one such example. Java used
to hash only about 1/8 of the characters in long strings [9]. This
hardcoded limit made hashing faster, but as it could lead to lots of
collisions without no fallback mechanism to save it, from JDK 1.2
on, all characters are hashed.

6 CONCLUSION
We have laid out the case for adaptive hash functions, which reside
between key-agnostic and perfect hashes. Our primary contribu-
tion lies in reconceptualizing hash tables as inherently adaptive
data structures, which can marry the theoretical guarantees of
universal hashing with the common-case performance of weak
hash functions. To support this viewpoint, we implemented this
approach in a real-life system and demonstrated improved perfor-
mance as well as robustness on string and integer/pointer hashing
by capturing real-life key patterns and providing efficient search
algorithms. The design space opened up by the adaptive hashing
framework is large, and the adaptation mechanisms investigated in
this work hardly cover a substantial or particularly imaginative part
of it, leaving ample room for further developments. In particular,
the max-chain-length mechanism can form the basis of a defense
against denial-of-service collision attacks without constraining the
choice of hash function [2].

Finally, the source code of the SBCL changes and the benchmark-
ing code to reproduce the experimental results are open-sourced
and available at https://github.com/melisgl/sbcl/tree/adaptive-hash.

ACKNOWLEDGMENTS
We thank Christophe Rhodes, Miloš Stanojević, Andrew Senior,
Paul-Virak Khuong, and the reviewers for their valuable comments.

ELS 2024 29

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-

ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA, 2006. ISBN 0321486811.

[2] Jean-Philippe Aumasson and Daniel J Bernstein. SipHash: a fast short-input PRF.
In International Conference on Cryptology in India, pages 489–508. Springer, 2012.

[3] Djamal Belazzougui, Fabiano CBotelho, andMartin Dietzfelbinger. Hash, displace,
and compress. In European Symposium on Algorithms, pages 682–693. Springer,
2009.

[4] Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy.
ACM Computing Surveys (Csur), 50(1):1–36, 2017.

[5] WilliamCollins. Data Structures and the Java Collections Framework. McGraw-Hill
Science/Engineering/Math, 2004. ISBN 0073022659.

[6] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf
Der Heide, Hans Rohnert, and Robert E Tarjan. Dynamic perfect hashing: Upper
and lower bounds. SIAM Journal on Computing, 23(4):738–761, 1994.

[7] Michael L Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with 0 (1) worst case access time. Journal of the ACM (JACM), 31(3):538–544,
1984.

[8] Brian Hentschel, Utku Sirin, and Stratos Idreos. Entropy-learned hashing: Con-
stant time hashing with controllable uniformity. In Proceedings of the 2022
International Conference on Management of Data, pages 1640–1654, 2022.

[9] JDK bug database. JDK-4045622: java.lang.String.hashCode spec incorrectly
describes the hash algorithm. https://archive.fo/LB0wY, 1997. Accessed: 2024-04-
14.

[10] JDK bug database. JDK-4669519: Hashmap.get() in JDK 1.4 performs very poorly
for some hashcodes. https://bugs.java.com/bugdatabase/view_bug?bug_id=
4669519, 2023. Accessed: 2024-04-14.

[11] Bob Jenkins. Integer hashing. https://web.archive.org/web/20070210182431/http:
//burtleburtle.net/bob/hash/integer.html, 2007.

[12] Aarati Kakaraparthy, Jignesh M Patel, Brian P Kroth, and Kwanghyun Park. VIP
hashing – Adapting to skew in popularity of data on the fly (extended version).
arXiv preprint arXiv:2206.12380, 2022.

[13] Hans Peter Luhn. A new method of recording and searching information. Amer-
ican Documentation, 4(1):14–16, 1953.

[14] Bernard ME Moret. Towards a discipline of experimental algorithmics. In Data
structures, near neighbor searches, and methodology, pages 197–213. Citeseer, 1999.

[15] William Newman. SBCL: Steel Bank Common Lisp, 1999. URL https://sbcl.org.
[16] Probably Dance. I wrote the fastest hash table, 2017. URL https://probablydance.

com/2017/02/26/i-wrote-the-fastest-hashtable/. Accessed: 2024-04-14.
[17] Rabbit Hashing. Rabbit hashing, 2015. URL https://github.com/tjizep/rabbit.

Accessed: 2024-04-14.
[18] Kyle Siegrist. Probability, mathematical statistics, stochastic processes. https:

//www.randomservices.org/random/urn/Birthday.html, 1997.
[19] Guy Steele. Common LISP: The language. Elsevier, 1990.
[20] Wikipedia contributors. Hash table — Wikipedia, The Free Encyclopedia, 2024.

URL https://en.wikipedia.org/w/index.php?title=Hash_table&oldid=1207615479.
[Online; accessed 3-March-2024].

[21] Wikipedia contributors. Fowler–Noll–Vo hash function—Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Fowler%E2%80%93Noll%
E2%80%93Vo_hash_function&oldid=1215467221, 2024. [Online; accessed 14-
April-2024].

A PROOFS
We restate the propositions from Section 2 and Section 4.5 and
provide proofs.

Proposition 6. [Expected Cost of the Uniform Hash] Let 𝑃 be a
uniform distribution over functions that map keys to buckets. Then,

E
𝜋1:𝑛∼𝑃

𝐶 (𝑐 ([𝜋1 (𝑘1), . . . 𝜋𝑛 (𝑘𝑛)],𝑚)) = 1 + 𝑛 − 12𝑚 ,

where 𝜋1:𝑛 are 𝑛 independent samples from 𝑃 .

Proof. Because we sample a hash function independently for
each key, 𝜋𝑖 (𝑘𝑖) are independent and distributed uniformly over
the key space. Writing the expected number of comparisons for a
lookup as a sum over the 𝑖th key added to the hash table, we get

∑𝑛−1
𝑖=0

(
1 + 𝑖

𝑚

)
𝑛

=
𝑛 + 𝑛 (𝑛−1)

2𝑚
𝑛

= 1 + 𝑛 − 12𝑚 . □

Proposition 4. [Perfect Hashes have Minimal Cost] Let𝑈 (𝑛,𝑚) be
the bucket count vector of any perfect hash of 𝑛 keys and𝑚 buckets.
Let 𝑞 = ⌊𝑛/𝑚⌋ and 𝑟 = 𝑛 mod𝑚. Then,

𝐶 (𝑈 (𝑛,𝑚)) = (𝑚 − 𝑟)𝑞(𝑞 + 1)2𝑛 + 𝑟 (𝑞 + 1) (𝑞 + 2)2𝑛 ,

and this cost is minimal.

Proof. A set of hash values is either perfect or non-perfect.
Since all perfect hashes have the same cost𝐶 (𝑈 (𝑛,𝑚)), if we could
construct a perfect hash with lower cost from any non-perfect hash,
it would follow that 𝐶 (𝑈 (𝑛,𝑚)) is minimal.

Next, we show one such construction. For any non-perfect set
of hash values with bucket counts 𝑐 , there are always two buckets
𝑖 and 𝑗 such that 𝑐𝑖 > 𝑐 𝑗 + 1 (else it would be a perfect hash due
to bucket counts having to sum to 𝑛). By moving one hash from
bucket 𝑖 to 𝑗 , we get a new set of hash values with bucket counts 𝑐′
whose cost is lower because 2𝑛(𝐶 (𝑐) −𝐶 (𝑐′)) = 𝑐𝑖 (𝑐𝑖 + 1) + 𝑐 𝑗 (𝑐 𝑗 +
1) − (𝑐𝑖 − 1)𝑐𝑖 − (𝑐 𝑗 + 1) (𝑐 𝑗 + 2) = 𝑐𝑖 − 𝑐 𝑗 − 1 > 0. □

Proposition 7. [Expected Regret of the Uniform Hash] For all load
factors 𝑞 ∈ N (𝑛 = 𝑞𝑚), the expected regret of the uniform hash is
0.5 + 1

𝑚 .

Proof. Let 𝜋1:𝑞𝑚 (𝑘1:𝑞𝑚) = [𝜋1 (𝑘1), . . . , 𝜋𝑞𝑚 (𝑘𝑞𝑚)]. Then,
E

𝜋1:𝑞𝑚
𝑅(𝜋1:𝑞𝑚 (𝑘1:𝑞𝑚),𝑚)

= E
𝜋1:𝑞𝑚

𝐶
(
𝑐 (𝜋1:𝑞𝑚 (𝑘1:𝑞𝑚),𝑚)

) −𝐶 (
𝑈 (𝑛,𝑚))

= 1 + 𝑞𝑚 − 12𝑚 − 𝑞 + 12
= 0.5 + 1

𝑚
. □

Proposition 8. [Expected Cost of Pointer-Mix] Let 𝑘1:𝑛 be integer
keys, and P = {𝑘𝑖 ≫ PB : 𝑖 ∈ [1, 𝑛]} the set of pages (the high bits of
keys). Let the keys be distributed over the pages uniformly, 𝑛 = |P |𝑢,
where 𝑢 is the number of keys on the same page (𝑢 = |{𝑖 : 𝑘𝑖 ≫
PB = 𝑝}| for all pages 𝑝 ∈ P). We assume that all 𝑢 keys on the
same page form random subsets of arithmetic progressions with page
specific offsets but the same increments. Then, the expected cost of the
Pointer-Mix hash function is

1 + 𝑛 − 𝑢min(1, 2PB−𝑠𝑚)
2𝑚 .

Proof. First, we look at the case where there can be no collisions
between keys on the same page. This is true if the keys form an
arithmetic progression and are not just random subsets. Due to the
subset assumption, it is also true if the hash table is large enough
to hold a page worth of keys (shifted by 𝑠): 𝑙𝑜𝑔2 (𝑚) ⩾ PB − 𝑠 .

The cost decomposes as the sum of the number of hashes in the
same bucket as keys are added one by one. Thus, when there are
(𝑝 −1) previous pages’ worth of keys already in the hash table, all𝑢
keys on the next page will contribute the same amount 1+ (𝑝−1) 𝑢𝑚
to the cost because there are no collisions between them.

𝐶 = 𝑛−1
| P |∑︁
𝑝=1

𝑢
(
1 + (𝑝 − 1) 𝑢

𝑚

)
= 1 + 𝑛 − 𝑢2𝑚 .

ELS 2024 30

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

Second, if keys (shifted by 𝑠) on the same page may collide ran-
domly modulo𝑚, then we can expect to get only 𝑢𝑚−12PB−𝑠 guar-
anteed no colliding keys. Updating our formula, we get that

𝐶 = 1 + 𝑛 − 𝑢min(1, 2PB−𝑠𝑚)
2𝑚 . □

B THE EXPECTED NUMBER OF COLLISIONS
Here, we derive computationally cheap upper bounds on the ex-
pected number of collisions with the uniform hash for testing
whether the observed number of collisions in Algorithm 1 is too
many.

Given 𝑛 keys, 𝑚 buckets, and hash values ℎ1:𝑛 , let 𝑐 and 𝑢 be
the number of collisions and unused (empty) buckets, respectively.
The number of used buckets𝑚 − 𝑢 is equal to the number of non-
colliding keys 𝑛 − 𝑐 , so 𝑐 = 𝑢 + 𝑛 −𝑚 and it suffices to bound 𝑢
to bound 𝑐 . Appealing to the birthday problem [18], the expected
number of unused buckets is

E𝑢 =𝑚

(
1 − 1

𝑚

)𝑛
.

Holding the load factor 𝑓 = 𝑛/𝑚 constant, the proportion of unused
buckets is monotonically increasing in𝑚 and

lim
𝑚→∞E

𝑢

𝑚
= lim

𝑚→∞E

((
1 − 1

𝑚

)𝑚)𝑛/𝑚
= exp

(
− 𝑛
𝑚

)
= exp(−𝑓),

using the product limit formula of the exponential function.

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

load factor 𝑓

pr
op

or
tio

n
of

em
pt
y
bu

ck
et
s

𝑚 = 8
𝑚 = 16
exp(−𝑓)
1 − 𝑓 /2

Figure 9: Expected proportion of empty buckets with the uni-
form hash given a load factor with the two smallest possible
hash table sizes (𝑚 = 8 and𝑚 = 16), the tight upper bound
exp(−𝑓), and the loose but cheap upper bound 1 − 𝑓 /2 used
for small sizes.

Based on this upper bound, for small eq and all equal hash tables,
we use the test𝑚 exp(−𝑓) < 0.9𝑢 (where 𝑢 =𝑚 + 𝑐 − 𝑛) to indicate
whether the expected number of unused buckets (hence collisions)
is too high.

For eq hash tables when𝑚 < 2048, we use a faster to compute
and looser upper bound. In SBCL’s hash table implementation,
the load factor cannot exceed 1, so we only need to consider the
[0, 1] interval. In this interval, exp(−𝑓) ⩽ 1 − 𝑓 /2. Then, from
E 𝑢

𝑚 ⩽ exp(−𝑓), we have that
E
𝑢

𝑚
⩽ 1 − 𝑓 /2

E𝑢 ⩽ 𝑚 − 𝑛/2
E 𝑐 +𝑚 − 𝑛 ⩽ 𝑚 − 𝑛/2

E 𝑐 ⩽ 𝑛/2.
Since this upper bound is already quite loose at most load factors,
we use 𝑐 > (𝑛 ≫ 1) to test for too many collisions at small hash
table sizes.

C SBCL HASH TABLES
SBCL hash tables are technically separate-chaining, meaning that
there are explicit chains of keys which fall into the same bucket.
Ironically for a Lisp, these chains are not lists: for performance
reasons, they are represented by two arrays of indices, called the
index-vector and the next-vector), which are only resized when
the hash table grows. The main pieces fit together as follows:
• The vector pairs holds alternating keys and values in a
stable order, which is important for iteration (e.g. maphash).
The first key is at index 2.
• index-vector is a power-of-2-sized array of indices, that
maps a bucket to the index of the first key–value pair in
pairs or zero if it’s empty.
• next-vector maps the index of a pair to the index of the
next pair in the collision chain or zero at chain end. It also
chains empty slots in pairs together.
• For all but the lightest hash functions (standard eq and eql
tables), the hash values of all keys in the hash table are cached
in hash-vector. At lookup, the cached hash is compared to
the hash of the key being looked up, and if they are different,
then we know without invoking the potentially expensive
comparison function that they cannot match (Algorithm 1).

An important operation is rehashing. When the number of buckets
increases, keys are reassigned (“rehashed”) to buckets based on
their hash values, which are taken from hash-vector if there is
one. Rehashing iterates over pairs, rewriting index-vector and
next-vector.

Each standard hash table type (eq, eql, equal, equalp) have
separate accessors (GET, PUT, DEL), which are invoked through an
indirect call, and the two lighter ones have the hash function and
comparison function inlined. There is no SIMD, and SBCL does not
devirtualize calls.

D IMPLEMENTATION DETAILS
Eq hash tables are initialized with the Constant hash and a pairs
vector is allocated for up to 8 key–value pairs. At this time, there
is no index-vector and next-vector. The pairs vector is dou-
bled in size as more keys are added, but no rehashing is necessary
as there are no chains yet. Once the number of keys exceeds 32,
count_common_prefix_bits (see Algorithm 3) is invoked with 16
keys to guess the shift 𝑠 , we switch to the normal SBCL hash table

ELS 2024 31

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

implementation, set the hash function to pointer_shift and rehash
(Algorithm 4). Switching to the new hash function is implemented
as changing the set of accessors.

We added new hash table accessors for Murmur and added a new
slot for the detected shift 𝑠 to the hash table structure. Instead of
adding separate accessors for Pointer-Shift, which actually had the
best performance in microbenchmarks, we made Pointer-Shift and
Prefuzz share accessors, and to the inlined hash function we added
an if 𝑠 = 0 that dispatches to Prefuzz. This is to reduce pressure on
the instruction cache, which is an important consideration in mac-
robenchmarks. To minimize the performance penalty on rehashing,
we lift this dispatch out of the rehashing loop in the same way that
dispatches to different accessors are.

For equal hash tables, we pack the truncation limit and the
current max-chain-length into a single machine integer and store
it in the same slot that we used for 𝑠 in the eq case.

E BENCHMARKING ENVIRONMENT
All reported results are from a single Intel Core i7-1185G7 laptop
running Linuxwith the performance scaling governor. Turbo boost
and CPU idle states were disabled.
echo performance > /sys/firmware/acpi/platform_profile
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
cpupower -c 3 idle-set -D 0

The benchmarking process was run at maximum priority (nice -n
-20), pinned to a single CPU (taskset -c 3).

F MICROBENCHMARKING METHODOLOGY
We plot the estimated time it takes to do a particular operation vs
the number of keys (between 1 and at most 224) in the hash table for
different key types and allocation patterns. All hash table variants
compared in this paper allocate memory only when the insertion of
a new key requires growing the internal data structures.9 To reduce
the computational burden of the benchmarking process, we list
ranges of key counts within which no resizing takes place and only
measure performance at the minimum and maximum key count
in each range, assuming that linear interpolation is a reasonable
approximation in between.

At each such key count, we then estimate the average time it
takes to perform a hash table operation (e.g. PUT). First, a set of
keys is generated for the given type (e.g. FIXNUM) and allocation
pattern (e.g. :RND 6). The hash table is allocated in an empty state
with comparison function equal for string keys or eq in all other
cases. Then, we measure the average time it takes to perform a
given operation for keys in the key set:
• PUT: Inserting one key when populating the hash table with
all keys in the key set. Keys are inserted in the order they
were generated.
• GET: Looking up a key in the key set. Keys are looked up in
random order.
• MISS: Looking up a key not in the key set. Keys are looked
up in random order.

9Moreover, they do so in an identical and deterministic pattern, so we exclude the time
spent in garbage collection from the measurements. The exception to this pattern is the
Constant hash, whose specialized implementation has a smaller than usual memory
usage.

Table 1: Estimated means and relative standard errors of real
(wall clock) and CPU times in seconds to compile and load a
set of libraries.

Real time ±RSE% CPU time ±RSE%
Pr 24.068 0.02% 24.037 0.02%
Mu 24.152 0.01% 24.117 0.01%
Co+Pr 23.976 0.03% 23.945 0.02%
Co+Mu 23.979 0.03% 23.943 0.03%
Co+Pr>Mu 23.988 0.02% 23.955 0.02%
Co+PS>Pr>Mu 23.951 0.02% 23.918 0.01%
Equal* 23.824 0.02% 23.792 0.02%

Table 2: Estimated times to test a set of libraries.

Real time ±RSE% CPU time ±RSE%
Pr 25.512 0.03% 24.493 0.02%
Mu 25.632 0.05% 24.632 0.04%
Co+Pr 25.367 0.03% 24.352 0.02%
Co+Mu 25.360 0.04% 24.342 0.03%
Co+Pr>Mu 25.385 0.04% 24.367 0.03%
Co+PS>Pr>Mu 25.372 0.03% 24.374 0.02%
Equal* 25.257 0.03% 24.256 0.02%

• DEL: Deleting a key in the key set. Keys are deleted in ran-
dom order.

The above steps are performed in the order listed. That is, first the
hash table is populated, and PUT is measured, followed by GET
then MISS. Finally, DEL timings are taken. At the end of the DEL
phase, the hash table is once again empty.

These average times over key sets have a low relative standard
deviation of about 0%–2%. To reduce the variance further, we take
multiple such measurements and report their average. In particular,
we take at least 3 measurements, then continue until the total
number operations performed exceeds 5 000 000.

Finally, when the number of keys is less than 100, timing gran-
ularity is a limiting factor, so we allocate a number of hash tables
(plus the two key sets for each, the second being for MISS) and
measure the total time it takes to e.g. populate them. The number of
hash tables is chosen such that the total number of keys is at least
100. This is a low enough number that the total memory footprint
of the allocated hash tables stays below 32KB, the CPU’s L1 cache
size in our benchmarking environment.

SBCL had a 16GB heap.

G MACROBENCHMARK RESULTS
Here, we describe our macrobenchmarking experiments in Sec-
tion 4.11 in more detail. In the first suite, 16 libaries were com-
piled and loaded with (asdf:load-system <library> :force
t). In the second, the tests of the same libraries were run with
(asdf:test-system <library>). In the third, SBCL tests were
run with file-by-file with tests/run-tests.sh.

We compared the following configurations (following a naming
convention like in Algorithm 4):

ELS 2024 32

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

Table 3: Estimated times to run SBCL tests.

Real time ±RSE% CPU time ±RSE%
Pr 582.164 0.02% 452.344 0.03%
Mu 582.858 0.02% 453.069 0.02%
Co+Pr 580.071 0.02% 450.294 0.03%
Co+Mu 579.448 0.02% 449.644 0.03%
Co+Pr>Mu 578.909 0.02% 449.035 0.02%
Co+PS>Pr>Mu 578.207 0.02% 448.392 0.03%
Equal* 568.890 0.02% 439.091 0.02%

(1) Pr: unchanged baseline version with the Prefuzz eq hash
and the non-adaptive equal hash

(2) Mu: the eq hash was changed to Murmur3
(3) Co+Pr: Constant hash followed by Prefuzz
(4) Co+Mu: Constant hash followed by Murmur3
(5) Co+Pr>Mu: Constant hash followed by Prefuzzwith fallback

to Murmur3
(6) Co+PS>Pr>Mu: Constant hash followed by Pointer-Shift

with fallback to Prefuzz then to Murmur3 (called Adaptive
in Section 4.10).

(7) Equal*: Like the previous, but the equal hash is also adap-
tive (see Section 3).

Note that since Pr and Co+Pr lack an eventual fallback to Murmur,
they have an easy-to-trigger unbounded worst case, so it may be
more pertinent to think of Mu as the baseline.

In the benchmarking environment described in Appendix E, all
individual benchmarks in the three benchmark suites (e.g. running
the tests of a single library or a single SBCL test file) were run 10
times on each configuration with their runs interleaved to reduce
the effect of correlated noise. We estimated the mean time a bench-
mark took on each configuration and computed the standard error
of this estimated mean. We report the total estimated mean times
for each benchmark suite along with their relative standard errors
(RSE) in Tables 1 to 3.

ELS 2024 33

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

H RESULTS FOR STRINGS
Keys are sampled from the set of all (about 40 000) strings in the
running Lisp. This includes names of symbols, packages, docstrings,
etc. The 10th and 90th percentiles of the distribution of the string
lengths is 7 and 39. The MISS key set consists of random strings
with length sampled uniformly from the [4, 44] interval.

21 24 27 210 213 216
0

0.2

0.4

number of keys

re
gr
et

Uniform
SBCL
Adaptive

Figure 1: Regret (Definition 5) with string keys. Adaptive
does not gain or significantly compromise on regret. Points
where the truncation limit changes vary between runs.

21 24 27 210 213 216

26

27

ns
/p

ut

SBCL
Adaptive

Figure 2: PUT timings in nanoseconds with string keys. Note
the log scales. The plot shows the average time for inserting
a new key when populating an empty hash table with a given
number of keys.

21 24 27 210 213 216

26

27

ns
/g

et

SBCL
Adaptive

Figure 3: GET timings with string keys.

21 24 27 210 213 216
25

26

27

ns
/m

iss

SBCL
Adaptive

Figure 10: MISS timings with string keys

21 24 27 210 213 216

26

27

ns
/d

el

SBCL
Adaptive

Figure 11: DEL timings with string keys

ELS 2024 34

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

I RESULTS FOR FIXNUM :PROG 1
Keys form an arithmetic progression with difference 1 starting from
a large random offset and are used in that order for PUT. We also
generate a set of keys not in the hash table for MISS, by using
another, suitable offset (so that the two sets are disjunct). For GET,
MISS, and DEL, keys are presented in random order.

21 26 211 216 221 226
0

0.2

0.4

0.6

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 4: Regret with FIXNUM :PROG 1. Murmur closely tracks
Uniform. Prefuzz is aggressively optimized for small sizes.
Adaptive (Algorithm 4) is a perfect hash here. Both Co+Pr
(Constant followed by Prefuzz) and Adaptive use the Con-
stant hash until the fixed switch point at 32 keys (black dot).

21 26 211 216 221 226

25

26

27

ns
/p

ut

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 5: PUT timings with FIXNUM :PROG 1. Prefuzz outper-
forms Murmur even at large sizes despite higher regret be-
cause it’s friendlier to the cache (its collisions are between
subsequent elements of the progression), and its combination
with Constant is even faster. Thus, despite being a perfect
hash, Adaptive can improve on them only marginally.

21 26 211 216 221 226
23

25

27

ns
/g

et

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 6: GET timings with FIXNUM :PROG 1. Keys are queried
in random order so regret matters more here than with PUT,
but the cache-friendliness of Prefuzz still keeps it ahead of
Murmur. As expected, Adaptive can finally benefit from its
zero regret after the Constant hash phase.

21 26 211 216 221 226
23

25

27
ns

/m
iss

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 12: MISS timings with FIXNUM :PROG 1

21 26 211 216 221 226
23

25

27

ns
/d

el

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 13: DEL timings with FIXNUM :PROG 1

ELS 2024 35

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

J RESULTS FOR FLOAT :PROG 1
Keys are generated as in Appendix I, but the fixnum values are
converted to single-float.

21 26 211 216 221
10−3

100

103

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 7: Regret with FLOAT :PROG 1. To be able to plot the
catastrophic failure of Prefuzz (and of Co+Pr, consequently),
we use log scale for regret on this graph. Single floats are es-
pecially problematic for Prefuzz because they can have many
constant low bits. Adaptive detects these constant low bits
and does better than Uniform until variation in the floating
point exponents makes its original estimate of the number
of constant low bits invalid, and the resulting gradual in-
crease in collisions makes it switch to Prefuzz at rehash time.
This is a spectacularly bad idea in this scenario, and the high
number of collisions causes an immediate switch to Murmur.
The switch times vary by hash table because the key sets are
generated starting from random offsets.

21 26 211 216 221

26

28

210

ns
/p

ut

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 14: PUT timings with FLOAT :PROG 1

21 26 211 216 221

25

210

ns
/g

et

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 15: GET timings with FLOAT :PROG 1

21 26 211 216 221

25

210

ns
/m

iss

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 16: MISS timings with FLOAT :PROG 1

21 26 211 216 221

25

210

ns
/d

el

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 17: DEL timings with FLOAT :PROG 1

ELS 2024 36

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

K RESULTS FOR FIXNUM :PROG 12
Same as FIXNUM :PROG 1, but with a difference of 12.

21 26 211 216 221 226
0

0.2

0.4

0.6

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 8: Regret with FIXNUM :PROG 12. Murmur closely tracks
Uniform, but Prefuzz is better across almost the whole range.
Arithmetic (Section 4.4) would be a perfect hash here, but
Adaptive, which uses Pointer-Shift (Section 4.6), is not quite
perfect due to the interference of its 𝑘 ≫ PB term.

21 26 211 216 221 226

25

26

27

ns
/p

ut

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 18: PUT timings with FIXNUM :PROG 12. Prefuzz out-
performs Murmur due to its speed, lower regret and cache-
friendliness. Adaptive is able to benefit from its advantage
in regret only at larger sizes.

21 26 211 216 221 226
23

25

27

ns
/g

et

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 19: GET timings with FIXNUM :PROG 12. Compared to
PUT, differences in regret translate more clearly to lookup
performance because keys are queried in random order.

21 26 211 216 221 226
23

25

27

ns
/m

iss

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 20: MISS timings with FIXNUM :PROG 12

21 26 211 216 221 226
23

25

27

ns
/d

el

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 21: DEL timings with FIXNUM :PROG 12

ELS 2024 37

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

L RESULTS FOR FIXNUM :RND 6
Similar to :PROG 6, but the difference between successive keys is
sampled uniformly from the [0, 5] interval.

21 26 211 216 221 226
0

0.2

0.4

0.6

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 22: Regret with FIXNUM :RND 6. Prefuzz does better
than Murmur initially but gradually loses its edge. Adaptive
keeps its edge.

21 26 211 216 221 226

25

26

27

ns
/p

ut

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 23: PUT timings with FIXNUM :RND 6. Once again, the
advantage of Prefuzz over Murmur grows with size because
it is friendlier to the cache. Adaptive manages to translate
some of its lead in regret into outright speed.

21 26 211 216 221 226
23

25

27

ns
/g

et

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 24: GET timings with FIXNUM :RND 6. Prefuzz is consid-
erably ahead of Murmur at all sizes. Adaptive is better than
Prefuzz at larger sizes.

21 26 211 216 221 226
23

25

27

ns
/m

iss

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 25: MISS timings with FIXNUM :RND 6

21 26 211 216 221 226
23

25

27

ns
/d

el

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 26: DEL timings with FIXNUM :RND 6

ELS 2024 38

ELS’24, May 06–07, 2024, Vienna, Austria Gábor Melis

M RESULTS FOR CONS :RND 6
Like the FIXNUM :RND 6, but keys are cons objects with a random
number of conses allocated between them. There is no explicit
random offset is here; we rely on the addresses assigned by the
memory allocator. To prevent the garbage collector from compact-
ing memory regions holding these objects in memory, the skipped
over conses are kept alive.

In all experiments, there is some unexplained weirdness at large
sizes, which affects all hashes except Murmur. Even the regret of
Adaptive is affected: it improves to an unexpected level but does so
very erratically.

21 26 211 216 221 226
0

0.2

0.4

0.6

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 27: Regret with CONS :RND 6. Murmur closely tracks
Uniform. Prefuzz works well at small sizes. Adaptive is a bit
better still.

21 26 211 216 221 226

25

26

27

ns
/p

ut

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 28: PUT timings with CONS :RND 6. Prefuzz outper-
forms Murmur even at large sizes despite its higher regret
because its collisions are between subsequent elements of
the progression, which is friendly to the cache.

21 26 211 216 221 226
23

25

27

ns
/g

et

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 29: GET timings with CONS :RND 6

21 26 211 216 221 226
23

25

27

ns
/m

iss

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 30: MISS timings with CONS :RND 6

21 26 211 216 221 226
23

25

27

ns
/d

el

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 31: DEL timings with CONS :RND 6

ELS 2024 39

Adaptive Hashing ELS’24, May 06–07, 2024, Vienna, Austria

N RESULTS FOR SYMBOL :EXISTING
We list all symbols in the running Lisp system and take a random
subset of the desired size. These symbols happen to be packed
tightly in not too many pages, and their addresses, if sorted, would
approximately follow an arithmetic progression, which is a great
fit for Pointer-Shift (Section 4.6, Algorithm 4). But the keys are
randomly selected and presented in random order even for PUT, so
this effect can only be seen at close to maximal sizes.

The MISS key set is generated with (gensym).

21 24 27 210 213 216
0

0.2

0.4

0.6

number of keys

re
gr
et

Uniform Murmur
Prefuzz Co+Pr
Adaptive

Figure 32: Regret with SYMBOL :EXISTING. All hashes closely
track Uniform. Adaptive, which leaves memory addresses
most intact, takes advantage of the nature of the data at close
to maximal sizes.

21 24 27 210 213 216

25

26

27

ns
/p

ut

Murmur Prefuzz
Co+Pr Adaptive

Figure 33: PUT timings with SYMBOL :EXISTING. Prefuzz out-
performs Murmur because it is faster to compute. The ad-
vantage of Co+Pr and Adaptive over Prefuzz comes almost
exclusively from the initial Constant hash phase, with Adap-
tive enjoying a small edge due to its better regret at the very
end.

21 24 27 210 213 216
23

25

27

ns
/g

et

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 34: GET timings with SYMBOL :EXISTING.

21 24 27 210 213 216
23

25

27

ns
/m

iss

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 35: MISS timings with SYMBOL :EXISTING

21 24 27 210 213 216
23

25

27

ns
/d

el

Murmur
Prefuzz
Co+Pr
Adaptive

Figure 36: DEL timings with SYMBOL :EXISTING

ELS 2024 40

Tuesday, 25 April 2023

ELS 2024 41

Period Information Extraction: A DSL Solution to a Domain
Problem
Arthur Evensen

RavenPack
Marbella, Spain (remote)
arthur@evensen.space

ABSTRACT
PEREL, a lisp-like proprietary domain-specific language (DSL), was
developed for the period detection system at RavenPack to enable
non-developer team members with domain expertise to directly
manage the period detection rules. This solution was developed in
response to previously encountered workflow problems, namely
slow feedback cycles, developer bottlenecks, and the split between
domain experts and implementors. This paper provides a high-
level overview of the period detection system, details the pain
points that led to PEREL, and outlines the development cycle of the
project. Subsequent sections then delve into the DSL itself, first as a
language, then exploring key implementation details, before turning
to the supportive tooling. Finally, we present more examples.

CCS CONCEPTS
• Software and its engineering→ Domain specific languages.

KEYWORDS
Common Lisp, DSL, period detection, workflow optimization
ACM Reference Format:
Arthur Evensen. 2024. Period Information Extraction: A DSL Solution to
a Domain Problem. In Proceedings of the 17th European Lisp Symposium
(ELS’24). ACM, New York, NY, USA, 6 pages. https://doi.org/10.5281/zenodo.
11008823

1 CONTEXT
RavenPack converts unstructured text to structured data, primarily
oriented towards the financial industry. We have a period detection
system as part of our document analysis, which identifies the start
and end times of events. Each period has three parts: a type, a pattern,
and an extractor.

For example, “the nineteenth week of 2024” could be interpreted
as a period spanning [2024-05-06, 2024-05-13) and categorized as a
$period-week type. The types can be referenced in the patterns and
form part of the means of abstraction. The pattern is what to match
to count as a detection, e.g. $numeric-ordinal %literal-week
of $period-absolute-year – in this pattern, %literal-week is
the result of pattern-matching in another part of the system, while
$period-absolute-year is another period detection as discussed
in Section 4.2.3. The extractor is code to execute to compute the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-8-3
https://doi.org/10.5281/zenodo.11008823

period spec for the period detection, pulling data from the text match
and calculating the start and end specifications. In other words, the
extractor defines the semantics of the particular period detection.
For this example:

Listing 1: Example period extractor
(l e t ((n (e x t r a c t $numer i c−o rd ina l)))

(add
(e x t r a c t $ p e r i o d− a b s o l u t e−y e a r)
s t a r t [= [week n]]
end [+ [weeks 1]]))

In Listing 1, n gets bound to the number extracted from the
$numeric-ordinal. Afterwards, it extracts the period spec from
the $period-absolute-year’s extractor and (non-destructively)
modifies it by adding (appending) [= [week n]] to the end of
its start, and [+ [weeks 1]] to its end. Finally, the resultant
period spec struct is returned, and might in turn be used by other
periods/extractors or evaluated to produce a time interval.

2 PROBLEM
Originally, non-developer team members (editors) noticed miss-
ing/poor detections, made the decisions for the desired behaviour,
and submitted requests for developers to implement. This process
worked, as the corpus of 1.2K periods attests. However, it made for
a slow feedback cycle where developer availability bottlenecked
improvements, and split the reasoning based on the text examples –
the domain reasoning – from the implementors of the periods. Most
developers spend only a small fraction of time looking at the raw
documents, compared with what the editors do, and might not be
aware of usage/description peculiarities for the text of the periods.

Inspired by the then-recent success of shifting another (simpler)
system area into direct editor control, the editor manager asked
whether something similar would be possible for the period detec-
tions. Two initial dead-end solutions were considered: the extractors
were too varied/numerous for a simple choice selection system to
pair patterns and extractors, and the extractors were too arbitrary
for a slot-in system to leave them mostly pre-written. Reflecting on
the arbitrariness of the extractors and their individual limited size
and simplicity, we realized we were looking for a way to write arbi-
trary rules for a particular domain – which is what a programming
language is (teleologically). Hence, a solution would be isomorphic
to a DSL. After taking rough stock of what capabilities a DSL would
need, we said we could make one with supportive tooling to hand
over the periods to editorial control and that it should address the
identified pain points.

ELS 2024 42

ELS’24, May 6–7 2024, Vienna, Austria Arthur Evensen

3 DEVELOPMENT CYCLE
3.1 Timeline
The project started with an in-depth analysis of existing extrac-
tors and concurrent drafting of a DSL spec in spring 2022 by two
developers. During the analysis, it was found that some aspects
of existing extractors were unnecessarily low-level: for example,
extract (as shown in Listing 1) in PEREL replaces three different
prior approaches to accessing underlying data. Also, various com-
mon list manipulations (on the start and end of period specs) were
generalized into means of combination. After the initial pass to look
for similarities in extractors, a second pass to look for differences
was done, focused on edge cases like extractors of unusually big
size. This latter pass resulted in an additional mean of combination
and a couple utilities, but the inspected edge cases were primarily
found to be of dubious quality, reinforcing the decision to make the
DSL as simple as possible.

Once drafted, the DSL spec was handed over to the test user.
Despite the lack of any tooling, the test user went from initial
confusion to productive in a month’s time with about a week of
spread effort. Observing that – as a medium – a programming
language is in part a user interface[3], and borrowing from De-
sign Thinking principles regarding lo-fi prototyping[6], the initial
editor-written extractors were made through the lo-fi approach of
pretence. That is, by simulating hypothetical UI/compiler respons-
es in chat. Unfortunately, the lo-fi stage led to less constructive
critique than anticipated: The goal had been to rapidly iterate on
the spec during the lo-fi stage with minimal cost sunk into any
particular version of it, but it was only later with more experience
and growing confidence in the DSL programming that the test user
started contributing wishful thinking and suggestions.

The test user succeeding in writing extractors without any tool-
ing and minimal experience validated the overall feasibility, though,
as supportive tooling should both ease on-boarding and extrac-
tor writing. Hence, the DSL was implemented in summer 2022:
Given the minimal transpilation implementation as discussed in
Section 5, the initial implementing presented no major problems.
The main UI saw development next – with iterative development,
so the test user could use it in rudimentary state from early on – fol-
lowed by DB work, sync processes, QA processes, etc. The editor’s
experiences writing extractors occasionally led to updates to the
spec/implementation, and to uncovering bugs/errata. In general,
the project has taken about two calendar years, with approximately
one year of development effort, occasionally interrupted by other
priorities for months at a time. The more interesting part of the UI
is a CodeMirror[4] editor, which we return to in Section 6.

3.2 LLM Considerations
Given the rise in popularity and capability of LLMs last year, we
detoured from other period detection and PEREL work for a week
in summer 2023 to investigate possible inclusions of LLMs into
detections or workflows. Initial ideas included whether it might
be possible to use an LLM to detect periods and the involved time
intervals, hint at period detections, or write the extractors given a
DSL specification.

Hence, the better part of a week was spent doing qualitative ex-
periments by trying out prompts to see how reliably/well ChatGPT[1]

might detect periods. These experiments were done using an in-
formal/unmeasured mixture of the gpt-3.5-turbo and gpt-4 models,
and consisted of trying various prompts while providing ChatG-
PT with sample paragraphs containing period-related text. The
prompts tasked the model with extracting all period-related data
and providing a JSON response.

While both models would technically accomplish the given task,
none of the prompts attempted successfully made it enumerate all
period information in the sample texts. gpt-3.5-turbo often returned
results that were invalid JSON, e.g. by inserting ellipses. gpt-4 gave
properly formatted results more of the time, though the lack of
full enumeration was present for it too. Overall, the models missed
period detections, reported false positives (e.g. identifying “ca.16%"
as a period), and sometimes returned “reverse periods” with start
timestamps occurring after their end timestamps.

However, the models did detect some periods missed by our
existing set. Having made that observation, but attempted enough
samples where the LLM models performed worse than the existing
systems, we decided that the most salient use while retaining con-
trol over period detection might be to add a future report using an
LLM to trawl documents for undetected periods. Editors could then
consider the various findings of the LLM and decide whether, and
how, to implement the suggested detections. Such a report remains
as future work, though.

4 DSL: PEREL
4.1 Overview
The DSL has been named “PEREL” (PERiod Extraction Language).
PEREL has been designed to be as minimal and simple as possible
while still covering (as discussed above in Section 3) almost all
functionality necessary to write the set of “legacy” (non-PEREL)
extractors. Given that the target users don’t have prior program-
ming expertise and hence preconceived notions of syntax, and since
staying with s-exps meant easy use of the Lisp reader as a parser,
we decided to embrace a minimal, lisp-like design.

Here is an overview of changes compared to Common Lisp:
(1) Locked-down permissions: Users can’t add new operators.

Users can’t access arbitrary Lisp functionality. Every input
atom is validated for ‘legality’ prior to testing the code (we
return to this in Section 5). Users are restrained to PEREL.
This means a limited vocabulary of about 40 operators, a
dozen of which are simple mathematical ones that everyone
is presumably familiar with from school.

(2) Magic symbols rather than keywords: Since all extractors
are read into the perel package and the DSL has a limited
vocabulary, it’s possible to determine symbol semantics by
context. This allowed the removal of keywords, so users can
simply treat everything as ‘magic text’ that carries out the
specified rules: One less concept to wrestle with (and since
explaining keywords would mean explaining symbols, two
concepts less). Hence, PEREL accepts (spec start [= [day
3]]) rather than (spec :start [:= [:day 3]]).

(3) Square bracket list construction: Given the above ob-
servation that keyword use of a symbol was determinable
by context, it was also determinable whether an element
of a list would require evaluation or not. Hence, backquote

ELS 2024 43

Period Information Extraction: A DSL Solution to a Domain Problem ELS’24, May 6–7 2024, Vienna, Austria

notation became unnecessary as well, making for the intro-
duction of square bracket list construction syntax: [1 2 3]
⇒ (perel-list 1 2 3)⇒ (list 1 2 3). (perel-list
is an intermediary for validation & debugging during tran-
spilation.)

(4) Assorted minor changes: Some symbols have been “re-
named”, e.g. PEREL let⇒ Lisp let*, and similarly for true
⇒ t, false⇒ nil. error in PEREL become calls to Lisp
error with a perel-error error type. These simplifications
aim to minimize necessary context to avoid questions like
“Why is it called t and nil?”

In short, two categories of changes: 1) Restricting the language to
deal with – and to only deal with – the domain in question and hence
to work to add/modify extractors, 2) syntactical simplifications to
prune away concepts and historic baggage irrelevant to the task
at hand, to minimize the necessary cognitive load/learning. It’s
the restriction part that changes the overall semantics. Besides the
above, legal extractors must return a period spec – assuming it
returns rather than (intentionally) errors out.

4.2 Analysis
We present an analysis of PEREL per the framework introduced in
chapter one of Structure and Interpretation of Computer Programs[2].

4.2.1 What are the primitives? The overall system which PEREL in-
terfaces with presents a set of “primitive attributes” (from PEREL’s
point-of-view) which deal with numbers and month names and so
on, which are what the period patterns match against. In addition,
PEREL has numbers, words, strings, lists, and a set of built-in op-
erations (e.g. let, add, extract). spec serves as the foundational
operation, by construing period specs directly.

4.2.2 What are the means of combination? The (sub)set of built-in
operations that construe specs from specs and/or parts of specs:
These allow simple modifications of existing specs, enabling users
to write extractors without having to rebuild start and end defi-
nitions from the ground up. add, as shown in Listing 1, is one of
these operations.

4.2.3 What are the means of abstraction? Each period is assigned a
period type, making it available for use in other patterns/extractors
as a black-box abstraction. In Listing 1, we saw an extractor that
abstracted across all $period-absolute-year ones (that happen
to match in the given pattern). So, the categorization into period
types (together with extract) permits the use of these higher-level
building blocks.

4.3 In Summary
The constraint of dealing only with the period domain as encap-
sulated by PEREL, and the reliance on other parts of the overall
system in preparing primitive data, etc., means that the mental
mode of dealing with PEREL is rather different from that of deal-
ing with Lisp. The constrained capacities force engagement with
the domain representation on its own terms. The test user has on
multiple occasions emphasized that the difficulty (once he got his
head around PEREL and the mechanical execution of code) usually
doesn’t lie in figuring out what code to write, but in finding good

candidate rules for dealing with the period text/pattern to start
with.

5 IMPLEMENTATION
5.1 Overview
The periods live in a DB: Because of the legacy 1.2K periods, the
period definitions table has separate perel_code and lisp_code
columns. A definition will either have perel_code or lisp_code
present. This means that when loading periods, we wrap the ex-
tractors up in lambdas as per Listing 2:

Listing 2: Lambda wrapping of extractor code
(defun g e n e r a t e− $ p e r i o d− e x t r a c t o r (p e r e l− code l i s p− c o d e)

(l e t ((code (i f p e r e l− code
(t r a n s p i l e− p e r e l− c o d e pe r e l− code)
(w i t h− s t anda rd− i o− syn t ax

(l e t (. . .)
(r e ad− f r om− s t r i ng l i s p− c o d e))))))

(compile n i l `(lambda (. . .)
(l e t (. . .)

, code)))))

Where this is the main entry into the transpiler:

Listing 3: Entry into the transpiler
(defun t r a n s p i l e− p e r e l− c o d e (p e r e l− code)

(l e t ∗ ((p e r e l− f o rm (p e r e l− c od e− s t r i n g− >pe r e l− code− s exp
pe r e l− code))

(_ (v a l i d a t e− l e g a l− s ymbo l s pe r e l− f o rm))
(l i s p− f o rm (pere l− form− > l i s p− f o rm pere l− f o rm)))

(apply # ' v a l i d a t e− f o rm− t y p e s l i s p− f o rm)
l i s p− f o rm))

As per Listing 3, the overall transpilation strategy consists of
reading, validation pass one, transpiling, validation pass two, and
returning. Validation works by throwing an error if there is any.

5.2 Reading
The parsing of the PEREL code string into an s-exp is done with a
customized readtable:

(1) Nil out various default macro characters that are of no con-
cern in PEREL: (#\# #\: #\| #\’ #\‘ #\, #\.). This
protects against malicious input – and, more importantly,
typos.

(2) Square brackets read a delimited list and cons ’perel-list
onto its head.

Beyond that, since a PEREL extractor is a single form, the reader
step throws an error if it returns before having read the entire input
stream, i.e. if the input consists of multiple top-level forms.

5.3 Validation Pass One
The first validation pass goes through all atoms in the extractor
and checks that they’re ‘legal’. An atom is legal if it is a number,
string, or an expected symbol. The various def-perel-fun forms
(an example is below) register related symbols, while the majority
of the other legal symbols come from the underlying data for the
pattern-matching part. Further, there is some special handling of
let forms to track user-introduced variables to treat those as legal
too.

ELS 2024 44

ELS’24, May 6–7 2024, Vienna, Austria Arthur Evensen

5.4 Validation Pass Two
The later pass is more involved, and performs rudimentary static
type checking. All PEREL operators have predefined type informa-
tion, as seen below in Listing 4:

Listing 4: Sample definitions with type information
(defparameter ∗ f a l l t h r o u g h− o p e r a t i o n s ∗

' (((< boo l ean) . (& r e s t (numbers number)))
. . .))

(d e f−pe r e l− f un (add spec)
((spec spec)
&key
((s t a r t n i l s t a r t− s u p p l i e d− p) op− specs)
((end n i l end− supp l i ed−p) op− specs)
((anchor n i l anchor− supp l i ed−p) op− specs)
(props spec−props))

. . .)

Syntactically, the function names and each parameter get wrapped
up in an extra list whose second element is the type specification.
In the case of multiple possible types, the type specification looks
like e.g. (U null number) (with the U standing for union).

Anyhow, the validation descends each s-exp and checks that
each operator receives permissible types. If not, it signals an error
that is hopefully friendlier to the end-user than the runtime errors
that might have arisen otherwise.

5.5 The Transpilation Itself
The def-perel-fun form macroexpansion generates transformer
methods for each operation, which are used in the transpilation
step. The transformer methods check the argument forms (arity
and keywords), transform the argument forms, and return a normal
Lisp s-exp equivalent of the original PEREL s-exp (which e.g. takes
care of turning magic symbols into keywords). Suffice it to say the
implementation involves some fun with backquotes.

There is a handcoded method for let forms due to the syntax
involved. The more interesting handcoded method is the one for
perel-list forms, which checks the list for the presence of mark-
ers of the different semantic lists we deal with in PEREL. This is
necessary to correctly transform them since not all the lists – un-
fortunately, given prior constraints – are plists, but also let us add
certain user conveniences as syntactic sugar: for example [- [days
3]] gets transformed into (list :+ (list :days (- 3))).

6 TOOLING
6.1 Overview
As part of the project, periods have received supportive tooling
– indeed, the tooling took longer than the DSL design and imple-
mentation itself. Numerous parts of the tooling setup would have
been necessary to support any solution to hand over control to
the editors: moving periods into a DB, displays, UIs, reports, sync
mechanisms across pipeline stages. . . To integrate with existing
systems used by editors, the UIs for dealing with period detection
all run in the web browser.

6.2 Migration into a DB
To make it possible for editors to manipulate periods directly, they
had to be stored in a DB. This necessitated the migration of the
pre-existing periods from the codebase into the DB, too. This was
straightforwards once a schema design was ready, as the periods
were defined in macro forms: writing a new macroexpansion for it
(for use as a script) and replacing the old one migrated them into
the DB by recompiling the relevant source.

However, the old macro forms had comments in them detailing
which document and sample text each period had been created to
target. This is useful context to have when considering their quality
and investigating potential issues, albeit not all the comments had
the same format or all of the relevant information. Some periods
also lacked comments entirely.

To preserve as much of this context as possible and establish a
canonical context for editor use, we wrote yet another macroex-
pansion for the period definition forms and coupled its use with a
modified readtable which had its #\; reader macro replaced by a
function which read the rest of the line as a string and wrapped
it up into a marked list. The macroexpansion function processed
these with an iteratively developed set of regexes to extract as much
context as possible. Checking these contextual documents for the
relevant period detection, along with searching through a general
batch of documents to look for new contexts to treat as canonical
in case of a miss (or lack of a context), allowed the preservation
of the majority of the contexts and contributed to a useful setup
overall.

6.3 CodeMirror Editor
As mentioned earlier, the input for the extractors is a CodeMirror
editor. CodeMirror is a JavaScript library to create code editors for
the web and supports many common editor features. Language
packages for CodeMirror can be written by creating a Lezer[5]
grammar, where Lezer is a parser generator made for use with
CodeMirror. CodeMirror was chosen based on word-of-mouth rec-
ommendations by another Lisp programmer, combined with good
documentation and how making an editor using it could be done in
a predominantly declarative manner. We only had two occasions
where we broke the offered declarative paradigm when writing the
editor and the PEREL Lezer package:

(1) It required some imperative code to make the code editor
aggressively autoindent all lines on all input.

(2) After initial struggles trying to differentiate the tokeniza-
tion of numbers and symbols using a pure Lezer grammar,
the tokenization of those two node types was split off into
ExternalTokenizers – a feature Lezer offers up precisely
in case a grammar description proves awkward.

The extractor editor, shown above in Figure 1, features auto-
completion (with descriptions of the operators as reminders to
the users), autoformatting, syntax highlighting (though the figure
doesn’t show it due to the lack of strings, numbers or comments),
bracket closing, and bracket highlighting (for well-formed input
due to the grammar). The autoformatting was the main goal, to
improve the detection of ’the same’ extractor across history rather
than hide sameness behind minor cosmetic code-as-string changes
(since a period is a type, pattern and code tuple and hence each

ELS 2024 45

Period Information Extraction: A DSL Solution to a Domain Problem ELS’24, May 6–7 2024, Vienna, Austria

Figure 1: The extractor editor, with visible autocompletion

such combination gets assigned a unique id). The autoformatting
also ensures improved readability for the extractors: Despite seeing
some well-formatted examples early on and receiving hints as to
how to format for better readability, the test user tended to pro-
duce indentationally flat extractors prior to the introduction of the
CodeMirror editor. The other features than the autoformatting are
directly for user convenience.

6.4 Validation and Quality Assurance
Period additions used to be validated in an ad-hoc manner by devel-
opers during implementation and implicitly through presence/ab-
sence as part of automation-assisted validationwork by the editorial
team focused on overall event detections. In addition, editors would
check up on the behaviour of the periods they requested. To mimic
the previous ad-hoc checks by developers, the UI for writing new
periods forces them to be locally tested against the text sample
they’re created against, so editors not only can, but have to, verify
that they are locally well-behaved. In fact, the automated checks per
period addition are generally broader than the ad-hoc predecessors.
However, the handover of periods to editor control, combined with
the observation that the creation of new periods is not purely addi-
tive (as outlined in Section 4.2.3), meant that the previous validation
approach was deemed no longer sufficient.

The early plan to improve the validation for period detections
was to create analogous automation to the validations done for
overall event detections. However, this was eventually scrapped for
essentially duplicating existing processes and workflows. Instead, it
was decided to integrate into the existing process by broadening the
work done by the existing validation automation, as this would lead
to better visibility and readily slot into existing editor workflows. As
a consequence, overall validation for period detections is no longer
primarily local, but systematically evaluates the broad impact of
changes to the set of periods.

7 EXAMPLES
Having given a high-level overview of PEREL, we turn now to
multiple examples and their discussion to give a more concrete
view. To format the listings in this section, each contains first a
pattern as a list, followed by the extractor code. As the type assigned
to each period is not pertinent to the extractor discussion, we skip
the type discussion. To clarify, the work on PEREL has also not
involved any direct changes to the pattern-matching system.

Listing 5: An extractor from primitives
(p a s t % s e v e r a l % l i t e r a l −we e k s)
(spec

s t a r t [− [weeks 3] depend−on−ends t r u e]
end [t h i s week])

Listing 5 shows an extractor construed from primitives, as dis-
cussed in Section 4.2.1. Periods constructed in this way form the
base layer that other, more high-level, periods can be built atop. The
particular extractor uses the publication timestamp of the document
it matches in to find the start of the current week, and treats that
as the end-point. For the start, it moves back three weeks from the
end-point. The editor in question decided that three weeks serves
as a practical heuristic for text like “the past several weeks”.

Listing 6: The simplest possible extractors
(% a l l % l i t e r a l − d a y $p e r i o d− r e l a t i v e−week)
(e x t r a c t $ p e r i o d− r e l a t i v e−week)

Listing 6 shows the simplest possible extractors, where the longer
pattern provides no further time information. These cases allow
“passing up” the time information from the shorter pattern repre-
sented by the $period-relative-week used in the above, to the
longer pattern that wraps it. This allows better pattern-matching
in other parts of the system that make use of the periods. The par-
ticular extractor uses extract to return the period spec from the
underlying $period-relative-week – in other words, these cases
rely purely on the means of abstraction.

Listing 7: Simple combination of extractors
($pe r i od−abso lu t e−weekday $pe r i od−day−pa r t
a t $p e r i od− ab so l u t e−hou r)

(combine
(e x t r a c t $pe r iod−abso lu t e−weekday)
(e x t r a c t $p e r i o d− ab so l u t e−hou r))

Listing 7 shows an extractor made using the combine operator,
which is one of the means of combination (and, implementation-
wise, wraps a pre-existing function to present a simplified interface
to the user). combine works by, in order, appending the starts of
the period specs into a single start, and similarly for the ends. It’s
a very convenient way to write extractors where each underly-
ing period has distinct size granularity. However, it can lead to
undesired behaviour when used too broadly, e.g. in case of over-
lap in the time units, or if underlying periods have extractors that
rely on the rounding behaviour involved in conversion to a time
interval rather than having both an explicit start and end. The
test user initially made broad use of combine, before experience
with such cases resulted in treating it as a less immediate option:
more precise manipulations are possible using the other means of
combination. The test user also observed that an undue amount of
legacy extractors using combine were assigned to the ambiguous
$period-combinations type, making the latter difficult to use as
building blocks for further periods.

Listing 8: An extractor using multiple means of combination
(% e a r l y in %the morning o f $p e r i o d− ab so l u t e−day)
(o v e rwr i t e
(add (e x t r a c t $p e r i o d− ab so l u t e−day)

s t a r t [= [hour 5]])
end [+ [hours 3]])

Listing 8 serves as an example of a more complex extractor. It
takes the period spec from the underlying $period-absolute-day,
adds [= [hour 5]] to the end of its start, hence ensuring a starting
time of 5 am, and then it uses overwrite to take the period spec re-
turned by the add and overwrites its end with the new specification
of [+ [hours 3]]. The overall result is to constrain the extracted

ELS 2024 46

ELS’24, May 6–7 2024, Vienna, Austria Arthur Evensen

time interval to [5 am, 8 am) on the given $period-absolute-day
– again, the particular interpretation of “early in the morning” is a
heuristic introduced by the editor.

Listing 9: An extractor with a conditional
(% the remainder o f $ p e r i o d− d i g i t s− y e a r)
(l e t ((y (e x t r a c t $ p e r i o d− d i g i t s− y e a r)))

(i f (l a t e r− t h an−p year y)
(error " Unable to compute a p r e c i s e p e r i o d ")
(spec
s t a r t [t h i s day]
end [= [year y month 12 day 31] i n c l u s i v e t r u e])))

As a final example, Listing 9 shows an extractor using a condi-
tional to check whether the document was published later than the
mentioned year. If so, due to the lack of information necessary to
do a sensible extraction, it throws an error. later-than-p allows
similar checks for a number of different time units, e.g. month,
possibly multiple at a time. The availability of throwing an error
means that contextually ambiguous detections, like the example,
can be handled meaningfully.

As can be observed, PEREL programming is “programming in
the small”, matching the initial observations of the limited size of
existing extractors as mentioned in Section 2. Effort has been put in-
to creating a stratified design so that the extractors can encapsulate
the intended period rules directly, without having to resort to ma-
nipulations of lower-level details. Hence, while the start and end
of a period spec are implemented as lists representing operations
to calculate a timestamp, and there are accessors that return these
lists (e.g. extract-end), PEREL intentionally does not provide a
mechanism for low-level manipulations of lists. For example, it’s
not possible to delete the last operation in the start of a spec, since
that would require breaking the black-box abstraction approach
towards making use of existing periods. In short, as the examples
highlight, PEREL’s semantic level is that of period specs.

8 REFLECTION
We have detailed the conception of the project from initial pain
points through full-fledged system, where the core realization that
led to settling on a DSL as a solution was that given a domain and
the need to express arbitrary (combinations of) rules in that do-
main, any solution would be isomorphic to a DSL anyhow. PEREL
is fairly minimalistic as a DSL, predominantly keeping simplified
Lisp syntax and having a small transpilation step down to Common
Lisp. Hence, it’s a semantics-oriented DSL, with the language con-
straints enforcing a qualitative change in the approach to writing
extractors: Unlike general purpose programming, where the focus
is on the expression of arbitrary processes and operations, the focus
in PEREL is on specifying the sensible time extraction for the given
pattern. The tight integration with the existing system also frames
the language, as discussed in Section 4.2.3.

While it was not an explicit design goal, the attempt to make
PEREL as simple as possible has led to a declarative DSL. Given
that Concepts, Techniques, and Models of Computer Programming[8]
claims that the declarative programming paradigm is the simplest
programming paradigm[7], this seems circumstantial evidence in
favour of having succeeded at a simple design. The behind-the-
scenes details of how the PEREL operators produce their outputs
are hidden from the users (except in the case of stray errors). The

PEREL spec does not discuss execution models, PEREL does not
offer any iteration constructs, and PEREL does not have mutation.

The development of the CodeMirror editor took less time than
originally anticipated, partly for representing a greenfield develop-
ment task, and partly for the documentation quality and the largely
declarative design of the CodeMirror library. In contrast, the DB
setup (involving both schema creation, integration with existing
sync processes, and ensuring coherent behaviour across multiple
tables for the addition/modification/deletion of periods) and the
UI development took considerably more tweaking than initially
estimated. The problem surface area represented by the existing
systems and workflows for the latter (as well as the more impera-
tive approaches) presumably impacted this, as both the CodeMirror
editor, DB setup, and UI development required on-the-fly learning
by the developer.

As observed, the test user quickly became productive when given
the DSL and eventually grew confident enough to provide construc-
tive critique and feedback on the language and systems. During the
development cycle, even with the system in a more rudimentary
state for most of it, the test user created almost 400 periods – a
sizeable chunk given the legacy corpus size of 1.2K. Indeed, all
PEREL listings in this paper were written by the test user. It will
be interesting to see how the system and its use develop now that
it’s launched (internally). The process of engaging deeply with the
period detection system as necessitated by the work surrounding
PEREL has also led to the identification of various possible overall
improvements orthogonal to the direct addition of new periods.

REFERENCES
[1] 2023. ChatGPT. https://openai.com/chatgpt
[2] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. 1996. Structure and

Interpretation of Computer Programs (2nd ed.). MIT Press.
[3] Matthew Butterick. 2016-2024. Beautiful Racket: Appendix - Why Lisp?Why Rack-

et? https://beautifulracket.com/appendix/why-lop-why-racket.html. Accessed:
2024-02-25.

[4] Marijn Haverbeke and Contributors. 2023. CodeMirror: Extensible Code Editor.
https://codemirror.net/

[5] Marijn Haverbeke and Contributors. 2023. Lezer: The Lezer Parser System. https:
//lezer.codemirror.net/

[6] Ralf Martin Steinert and Federico Lozano. 2015. TMM4220 - Innovation by Design
Thinking. Department of Mechanical and Industrial Engineering, Norwegian
University of Science and Technology. https://www.ntnu.edu/studies/courses/
TMM4220

[7] Peter Van Roy. 2024. The principal programming paradigms. https://www.info.ucl.
ac.be/~pvr/paradigmsDIAGRAMeng201.pdf

[8] Peter Van Roy and Seif Haridi. 2004. Concepts, Techniques, and Models of Computer
Programming (1st ed.). MIT Press.

ELS 2024 47

TheQuickref Cohort
Didier Verna
EPITA, LRE

Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

ABSTRACT
The internal architecture of Declt, our reference manual generator
for Common Lisp libraries, is currently evolving towards a three-
stage pipeline in which the information gathered for documentation
purposes is first reified into a formalized set of object-oriented data
structures. A side-effect of this evolution is the ability to dump that
information for purposes other than documentation. We demon-
strate this ability applied to the complete Quicklisp ecosystem. The
resulting “cohort” includes more than half a million programmatic
definitions, and can be used to gain insight into the morphology of
Common Lisp software.

CCS CONCEPTS
• Information systems→ Information extraction; Presenta-
tion of retrieval results; • Software and its engineering →
Software libraries and repositories.

KEYWORDS
Information Extraction, Software Analysis, Morphological Statistics
ACM Reference Format:
Didier Verna. 2024. The Quickref Cohort. In Proceedings of the 17th European
Lisp Symposium (ELS’24). ACM, New York, NY, USA, 4 pages. https://doi.
org/10.5281/zenodo.10947962

1 INTRODUCTION
Cohort: a group of individuals having a statistical

factor (such as age or class membership) in common in
a demographic study.

– The Meriam-Webster Dictionarya, definition 2.b.
ahttps://www.merriam-webster.com/dictionary/cohort

1.1 Context
Declt is a reference manual generator for Common Lisp libraries.
The project started in 2010, leading to a first stable release in 2013 [2].
Four years later, the Quickref project was born [1, 4–6] (at the time,
Declt was at version 2.3 [3]). Quickref runs Declt over the whole
Quicklisp1 repository and offers a website2, currently aggregat-
ing more than two thousand reference manuals for Common Lisp
libraries.
1https://www.quicklisp.org/
2https://quickref.common-lisp.net

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-8-3
https://doi.org/10.5281/zenodo.10947962

Declt runs by loading an ASDF system into memory and intro-
specting its contents. Because it is unrealistic to load the complete
set of Quicklisp libraries into a single Lisp environment, Quicklisp
runs Declt as a separate process for each library. The unfortunate
consequence is that the information gathered by Declt is not di-
rectly available to the Quickref instance. Under those conditions, it
remains easy to build a library index (by sorting the listing of the
generated reference manuals directory), but it is for instance less
straightforward to build an author index, as the author information,
extracted from each ASDF system, needs to survive each and every
Declt run.

Originally, Declt was designed to generate reference manuals
in GNU Texinfo3, an intermediate format suitable for software
documentation, which can in turn be converted into a number
of user-readable ones such as HTML, PDF, etc. Hence its name:
Documentation Extractor from Common Lisp to Texinfo…

Over the years, there has been some pressure to extend Declt’s
rendering capabilities to other output formats (including HTML
without the Texinfo intermediary). This led to an architecture over-
haul, which is ongoing.

1.2 The Declt Pipeline
The goal is to implement Declt as a three-stage pipeline, as depicted
in Figure 1. Declt’s historical entry point, the declt function, trig-
gers the whole pipeline, but for a more advanced usage, each stage
of the pipeline is meant to be accessible separately and directly via
its own entry point function.

(1) The first stage of the pipeline is called the assessment stage.
At this stage, Declt loads the library and introspects the Lisp
environment in order to extract the pertinent information.
This information is stored in a so-called report.

(2) The second stage of the pipeline is called the assembly stage.
At this stage, Declt organizes the information provided by a
report in a specific way. The result is called a script. A script
begins to look like a properly organized reference manual,
but is still independent from the final output format.

(3) Finally, the third stage of the pipeline is called the typeset-
ting stage. At this stage, Declt renders a script to a file by
typesetting its contents in a specific documentation format.

In 2022, we released version 4.0b1 of Declt, marking the achieve-
ment of stage 1 of the pipeline [7]. Declt now provides a function
called assess, which takes an ASDF system name as argument,
loads the corresponding library, introspects it, and creates the re-
port. The rest of the pipeline, which is not yet implemented, is
wrapped in a temporary function called declt-1, going directly
from a report to a Texinfo file.

3https://www.gnu.org/software/texinfo/

ELS 2024 48

ELS’24, May 6–7 2024, Vienna, Austria Didier Verna

System Assessment Assembly Typesetting Manual
report

(declt system ...)

(assess system ...) (declt-1 report ...)

Figure 1: The Declt Pipeline

The first direct benefit of this evolution is the ability for Quickref
to build an author index file in a much simpler and robust way.
Instead of calling the global declt function, Quickref now triggers
Declt in two steps. First, it calls the assess function to get a handle
on the generated report, and then continues with declt-1. In the
meantime however, the library’s contact information is extracted
from the report and dumped into a specific file. Once Quickref has
finished processing the full set of Quicklisp libraries, it loads back
all the contact information for all the libraries to create the index.

The funny thing is that once this was implemented, it quickly
occurred to us that Declt reports, now in a stable format, could be
fully dumped into files and used for all sorts of purposes other than
documentation. In fact, it is relatively easy to “hijack” the Quickref
infrastructure in order to dump Declt reports for the whole set of
Quicklisp libraries, effectively creating a cohort of programmatic
definitions.

In the following sections, we describe a preliminary cohort im-
plementation, which currently contains more than half a million
entities, and is already publicly accessible. Additionally, we show
how such a cohort can be used to gain insight into the current
shape of Lisp software.

2 DECLT REPORTS
A Declt report is a data structure containing general information
about a library (authors, license, copyright, etc.), and a flat list of
the discovered ASDF components and programmatic definitions
(packages, variables, functions, classes, etc.).

2.1 Definitions
Definitions are themselves reified in an object-oriented fashion
which is described in the Declt User Manual4. An excerpt of the
definitions hierarchy is given in Figure 2.

For documentation purposes, the information provided by each
kind of definition is as exhaustive as introspection permits. Most of
them point back to the original Lisp object, can access the object’s
docstring if any, etc. On top of that, the assessment stage finalizes a
library’s definitions list by constructing an extensive set of cross-
references (definitions pointing to definitions) that will eventually
lead to internal hyperlinks in the generated reference manual.

For example, a generic function definition contains a list of
method definitions (not raw method objects; pointers to the corre-
sponding method definitions), a reference to it’s method combina-
tion definition, but also a reference to a setf expander using this
function for access, and a list of (short form) setf expanders using
this function for update, if applicable.

4https://www.lrde.epita.fr/~didier/software/lisp/declt/bibliography/

definition

symbolASDF package

funcoidvaroids classoids

setfable-funcoidmethods
method combinations

function

compiler macros
types

setf expanders

macro

ordinary-function generic-function

Figure 2: Definitions Hierarchy Excerpt

2.2 Dumping
Asmentioned before, Declt reports were originally used byQuickref
only to dump library author information, so as to build an author in-
dex afterwards. When the idea of a full cohort emerged, we decided
to evaluate the potential usefulness of the idea by first creating a
quick cohort prototype.

To this aim, the current prototype only dumps an incomplete and
simplified version of Declt reports, that is, without performing true
serialization. Pointers to the original Lisp objects can of course not
be preserved in the dump. Cross-references between definitions are
not currently preserved either, and only a few interesting attributes
of each definition kind are retained, with some amount of pre-
processing for subsequent statistical analysis.

Figure 3 provides an excerpt from the dump of Declt’s own re-
port.The contents should be mostly self-explanatory. Programmatic
definitions start by a keyword denoting the definition kind, and
name. Docstrings are replaced by their length, and cross-references
by their number.

Such a simple dump already provides enough information to
perform all sorts of interesting morphological studies on the 2000+

ELS 2024 49

TheQuickref Cohort ELS’24, May 6–7 2024, Vienna, Austria

("net.didierverna.declt"
(:CONTACTS 1)
...
(:SYSTEM "net.didierverna.declt.assess"
:DOCSTRING 44 :DEPENDENCIES 2 :CHILDREN 2
:DEFSYSTEM-DEPENDENCIES 0)
...
(:PACKAGE "NET.DIDIERVERNA.DECLT.ASSESS"
:DOCSTRING 39
:EXTERNAL-SYMBOLS 169 :INTERNAL-SYMBOLS 119
:USE-LIST 2 :USED-BY-LIST 1)
...
(:CLASS "GENERIC-FUNCTION-DEFINITION"
:DOCSTRING 154
:DIRECT-SUPERCLASSES 1 :DIRECT-SUBCLASSES 1
:DIRECT-METHODS 11
:DIRECT-SLOTS 3)
...
(:GENERIC-FUNCTION "DOCUMENT"
:DOCSTRING 45 :MEHTODS 39)
...)

Figure 3: Declt Dump Excerpt

libraries available in Quicklisp, as will be exemplified in the next
section.

3 QUICKREF COHORT ANALYSIS
The current (beta) version of Quickref dumps Declt reports, as
shown in the previous section, for every Quicklisp library. The
resulting cohort (containing more than half a million programmatic
definitions) is available for download from the website5. In order
to demonstrate its potential usefulness, Quickref also performs a
number of example statistical computations on the cohort, and
generates subsequent plots, also visible on the website. Some of
them are reproduced below.

3.1 Symbols Morphology
Figure 4 presents the histogram of symbol names lengths in Quick-
lisp, showing a peak at 11 characters, but also going as far as 135
characters for a single symbol name. Two other plots, not included
in this article but visible on the website, show that most composed
symbols have a cardinality (the number of com-po-nents) of 1, 2,
or 3. The longest symbol appears to have 13 components. Most
symbol components are 4 characters long, although one symbol
(with a cardinality of 2) has a 126 characters long component. In
fact, it is the very same symbol that is 135 characters long in total.

3.2 Documentation Shape
Another interesting area of investigation is the current state of
Lisp documentation. Figure 5 shows the percentage of documented
definitions per kind. For most types of programmatic entities, only
20 to 40% get a docstring. Slightly above this range are method
combinations: half of them seem documented. On the other hand,

5https://quickref.common-lisp.net/cohort/

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120125130135

Symbol Names Lengths

Sy
m
bo

ls
nu

m
be

r

Symbol name length

Figure 4: Symbol Names Lengths Histogram

0

20

40

60

80

100
Documentation percentages

Co
ns

ta
nt

Sp
ec
ia
l

O
rd
in
ar
y
Fu

nc
tio

n
M
ac
ro

G
en

er
ic

Fu
nc

tio
n

M
et
ho

d

M
et
ho

d
Co

m
bi
na

tio
n

Cl
as
s

Sl
ot

Co
nd

iti
on

Se
tf
Ex

pa
nd

er
Co

m
pi
le
r M

ac
ro

Ty
pe

D
oc

um
en

te
d
de

fin
iti
on

sp
er
ce

nt
ag

e

Programmatic definitions

Figure 5: Documentation Percentages

Lisp programmers seem to disregard the documentation capabilities
of methods, slots, setf expanders and compiler macros.

3.3 Classoid Profiles
As a final example of cohort analysis, Figure 6 presents the average
number of direct slots, methods, parents, and children for structures,
classes, and conditions. The most striking element in this plot is the
average number of direct methods on classes, a little more than 6,
which is much higher than on structures or conditions. It also seems
that the multiple inheritance capability of classes and conditions
is not used extensively, as the average number of parents remains
only slightly above 1 (of course, it is exactly 1 for structures). Finally,
we can see that the average number of direct slots is significantly
higher in structures than in classes (and evenmore so in conditions),
probably because of slot inheritance. Indeed, we can also see, by
looking at the average number of children, that subclassing is more
frequent than “substructuring”.

ELS 2024 50

ELS’24, May 6–7 2024, Vienna, Austria Didier Verna

0

1

2

3

4

5

6

7

8

Structures Classes Conditions

Sl
ot
s

M
et
ho

ds
Pa

re
nt
s

Ch
ild

re
n

Sl
ot
s

M
et
ho

ds
Pa

re
nt
s

Ch
ild

re
n

Sl
ot
s

M
et
ho

ds
Pa

re
nt
s

Ch
ild

re
n

Av
er
ag

e
nu

m
be

ro
fd

ire
ct

…

Figure 6: Aggregative Data Structure Averages

4 PERSPECTIVES
The Quickref cohort is currently a proof of concept, but we hope
that the existence of a free database of more that half a million
programmatic (and ASDF) entities will trigger some interest. Sec-
tion 3 provided a glimpse at what can be done with it in terms of
statistical analysis, but we’re eager to hear about other potential
use cases.

The cohort is essentially a collection of Declt reports, presented
one way or another. Because of that, it makes sense to equip Declt
itself with some cohort manipulation ability. For example, it could
be interesting for a Lisp programmer to analyze their own (and
only their own) library / libraries in a way similar to what was
described in Section 3. We definitely are interested in doing so. We
plan on extending Declt along these lines in a near future. In such
a case, Declt could even manipulate actual reports (Lisp objects)
rather than their dumped form.

In order to make the whole Quickref cohort truly usable, the
next step is to stabilize the format used for dumping Declt reports.
Contrary to the current format illustrated in section 2.2, Declt
reports should be preserved as much as possible in order to not
impose any limit on potential applications. In particular, no pre-
computation should be performed prior to dumping and cross-
references between definitions should be preserved.

On the other hand, some parts of the reports need not (in fact,
should not) be preserved in the dump. We want the ability to ma-
nipulate reports without the corresponding libraries being loaded
in memory. This means that the actual Lisp objects correspond-
ing to each definition (whether programmatic or ASDF) should be
excluded from the dump.

All in all, it seems that what we are talking about here is some
kind of serialization, a topic on which we currently have no ex-
perience. Consequently, we’re eager to get some advice on that
matter.

REFERENCES
[1] Antoine Hacquard and Didier Verna. A corpus processing and analysis pipeline

for Quickref. In 14th European Lisp Symposium, pages 27–35, Online, May 2021.
ISBN 9782955747452. doi: 10.5281/zenodo.4714443.

[2] Didier Verna. Declt 1.0 is out. https://www.didierverna.net/blog/index.php?post/
2013/08/24/Declt-1.0-is-out, August 2013. Blog entry.

[3] Didier Verna. Declt 2.3 ”Robert April” is out. https://www.didierverna.net/blog/
index.php?post/2017/10/16/Declt-2.2-Christopher-Pike-is-out, October 2017. Blog
entry.

[4] Didier Verna. Announcing Quickref: a global documentation project for Common
Lisp. https://www.didierverna.net/blog/index.php?post/2017/12/13/Announcing-
Quickref%3A-a-global-documentation-project-for-Common-Lisp, December 2017.
Blog entry.

[5] Didier Verna. Parallelizing Quickref. In 12th European Lisp Symposium, pages
89–96, Genova, Italy, April 2019. ISBN 9782955747438. doi: 10.5281/zenodo.
2632534.

[6] Didier Verna. Quickref: Common Lisp reference documentation as a stress test for
Texinfo. In Barbara Beeton and Karl Berry, editors, TUGboat, volume 40, pages
119–125. TEX Users Group, TEX Users Group, September 2019.

[7] Didier Verna. Declt 4.0 beta 1 ”William Riker” is released. https://www.didierverna.
net/blog/index.php?post/2022/05/10/Declt-4.0-beta-1-William-Riker-is-released,
May 2022. Blog entry.

ELS 2024 51

py4cl2-cffi: Using CPython’s C API to call Python callables from
Common Lisp
Shubhamkar Ayare

shubhamkar.ayare@gmail.com

ABSTRACT
Common Lisp is an ANSI-standardized programming language with
excellent implementations and several features that make it suitable
for both prototyping and long-term projects. However, the library
count of Common Lisp (about 2,000 in Ultralisp) vastly lags main-
stream programming languages like Python (about 500,000 in PyPI).
In recent years, the Lisp library py4cl used a subprocess and stream-
based interprocess-communication (IPC) approach to call Python
from Common Lisp. Another library py4cl2 built upon py4cl’s IPC
approach and imported information about Python callables’ func-
tion signature through Python’s introspection facilities and also
enabled a switchable type mapping. However, interprocess com-
munication can be very slow. Furthermore, both py4cl and py4cl2
primarily rely on eval and exec, which is generally frowned upon.
In this paper, we present a Lisp library, py4cl2-cffi, that provides a
CFFI bridge to Python libraries through the excellently documented
C-API of CPython and compare its performance against other ex-
isting approaches that bring Python libraries to other languages.

CCS CONCEPTS
• Software and its engineering→ Interoperability.

KEYWORDS
Common Lisp, Python, CPython, Foreign function interface
ACM Reference Format:
Shubhamkar Ayare. 2024. py4cl2-cffi: Using CPython’s C API to call Python
callables from Common Lisp. In Proceedings of the 17th European Lisp Sym-
posium (ELS’24). ACM, New York, NY, USA, 8 pages. https://doi.org/10.5281/
zenodo.10997435

1 INTRODUCTION
Lisps are known for their homoiconicity and metaprogramming
facilities. The ANSI 1994 standard of Common Lisp[20] packs local
lexical binding with global dynamic binding, a numeric tower, a
package system for namespacing, the Common Lisp Object System
with multiple dispatch, a condition system that allows restarting
programs without unwinding the stack[16], and an extensive iter-
ation facility. In the years since, several additional facilities have
been standardized through de facto standard libraries[14]. These
include multithreading, Meta-Object Protocol, a C foreign func-
tion interface, and more. Excellent implementations such as SBCL
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.10997435

generate native assembly code (including SIMD) and also provide
facilities for compile-time type checking.

In addition to these, Common Lisp has extensive support for in-
teractive programming allowing for redefining constants, variables,
functions, macros, packages, and classes at runtime. This has been
primarily available through Emacs[22], but efforts are underway to
port this to Intellij/Jetbrains[10] as well as VS Code[15].

Overall, these facilities make Common Lisp implementations
excellent tools for both exploratory research and long-term projects.
However, the 500,000+ Python libraries in PyPI vastly outnumber
the 2000+ Lisp libraries in Ultralisp[6]. In modern times, this can
make Lisp less suitable for exploratory projects as one may be
left to reinvent the Python library in Lisp. The current project is
an attempt at providing facilities to call CPython callables from
Common Lisp, so that the extensive ecosystem of CPython becomes
useable through Common Lisp implementations. This is achieved by
embedding CPython in Common Lisp using the former’s excellently
documented C-API[5].

1.1 Previous Work
Burgled batteries[11] aimed at a deep integration between Com-
mon Lisp and CPython, so that a Lisp user of burgled-batteries
could have transparent access to Python objects. However, a deep
integration might not be the best approach to the problem[12].
The CPython and Common Lisp environments can disagree on
signal handling, timeouts, floating point traps, or other low-level
details. They also have high-level disagreements, for example, how
to resolve a class’ inheritance tree. py4cl[9] and py4cl2[7] avoid
these issues by keeping the Python and Lisp processes separate and
calling Python through stream-based interprocess communication.

While burgled-batteries aimed to interface with the CPython
implementation of Python, CLPython[8] aims at providing a com-
plete Python implementation written in Common Lisp itself. This
means that Python code can be compiled to native Lisp, potentially
side-stepping many of the issues discussed above. On the other
hand, CLPython does not have inherent access to C extensions
written for CPython such as Numpy.

1.2 Our Contribution
The interprocess-communication approach of py4cl and py4cl2 has
a high per-Python-call overhead. The C-API approach of burgled-
batteries and py4cl2-cffi can minimize this overhead. But in contrast
to burgled-batteries, py4cl2-cffi does not aim to enable subclassing
and inheriting Python classes which may raise issues of resolv-
ing inheritance trees. We only aim to conveniently call Python
callables (see section on Type Correspondence). This enables us to
achieve several tasks marked as “To Do” on burgled-batteries in an
equivalent amount of code (about 3,000 LOC).

ELS 2024 52

ELS’24, May 6–7 2024, Vienna, Austria Shubhamkar Ayare

Wehope that describing the implementation of py4cl2-cffi through
this document would allow other developers (including those of
CLPython) to interface with CPython according to their own re-
quirements and also enable better maintenance of py4cl2-cffi itself
over the longer run.

2 A BRIEF INTRODUCTION TO CPYTHON’S
PYTHON/C API

CPython provides an extensive Python/C API for extending and
embedding Python [5]. The API is made available in a C program
through the following two lines of code:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

Most Python/C API functions take in one or more arguments and
return an object which is an instance of the C structure PyObject.
Each such object has a type and a reference count associated with it.
The reference count is the number of places with a strong reference
to the object. The object is deallocated once its reference count
becomes zero. Strong reference may be contrasted with borrowed
reference. By holding a strong reference, the calling code shows
ownership of the object and indicates that the object should not
be deallocated. Once the calling code has no use of the PyObject
instance, it must decrement the reference count of the object, giving
up its ownership of the object. On the other hand, by holding
a borrowed reference, the calling code shows no ownership and
indicates that the object may be deallocated while the calling code is
still in progress. Most Python/C API functions return a new (strong)
reference to the returned PyObject instance . However, some return
a borrowed reference. Some functions even steal the reference of
their arguments, that is, they take over the ownership of the object.
Such functions are especially convenient when populating tuples
or lists. The Python/C API expects reference counts for embedded
Python to be managed through the Py_IncRef and Py_DecRef C
functions.

The API relies on a considerable use of C macros available only
during the compilation of the C code. On the other hand, Common
Lisp’s CFFI relies on C functions and variables available in a foreign
library loaded dynamically. For this reason, several C macros are
wrapped in equivalent C functions in py4cl-utils.c1. This file also
contains other utility functions aimed at obtaining compile-time
information from the C environment.

In the rest of this paper, the term PyObject will denote either
the C structure PyObject or an instance of that structure. Such a
PyObject instance is essentially just a cffi:foreign-pointer in
Lisp. However, we also implement a wrapper structure pyobject-
wrapper in Lisp. An instance of pyobject-wrapper stores a cffi:
foreign-pointer pointing to the corresponding PyObject.

The Python GIL
The Python interpreter is thread unsafe and expects that a global
lock — named the Global Interpreter Lock (GIL) — must be held
before doing even the simplest operations[4]. These include op-
erations to manage the reference counts of objects. We use the C
functions PyGILState_Ensure and PyGILState_Release for this
1The source code for py4cl2-cffi is available at https://github.com/digikar99/py4cl2-cffi.

purpose. To operate well with the often-multithreaded interact-
ive environment of SLIME, we attempt to release the GIL lock as
soon as possible during (pystart) itself. Subsequently, a Lisp ex-
pression using the Python/C API can be compiled or evaluated
in any Emacs buffer. However, it must first acquire the GIL, then
perform what it actually wants to perform with the embedded
Python, and finally release the GIL. Functions exported by the
py4cl2-cffi package use the pyforeign-funcall macro implemen-
ted as a wrapper around cffi:foreign-funcall. Amongst other
things, pyforeign-funcall acquires and releases the GIL. Thus,
users of py4cl2-cffi need not worry about acquiring and releasing
the GIL while using the py4cl2-cffi interface.

3 USING PYTHON3-CONFIG TO AUTOMATE
CONFIGURATION

Python comes with a convenient program python(3)-config that
supplies build options for embedding Python. py4cl2-cffi makes use
of python(3)-config present in the environment to obtain the list of
includes, ldflags as well as shared libraries and their locations. The
system and package py4cl2-cffi/config2 obtain this information
by running python3-config with uiop:run-program and stores it
in the following Lisp variables
• *python-ldflags*
• *python-ignore-ldflags*
• *python-includes*
• *python-compile-command*

This allows py4cl2-cffi to be simply dropped in a Python virtual or
conda environment. It will pick up the libraries for embedding the
appropriate Python automatically, thus easing user configuration.

4 CALLING PYTHON CALLABLES
py4cl[9] and py4cl2[7] primarily rely on eval and exec without
bothering with the Python internals. In contrast, py4cl2-cffi uses
the internals in an attempt to achieve better performance. The
process of calling a Python callable from Lisp can be described in
the following steps, implemented by the Lisp function pycall in
the source code:

(1) retrieve the PyObject corresponding to the Python-callable
(2) pythonize the Lisp arguments: convert them to PyObject
(3) call the Python callable with the pythonized arguments
(4) lispify the Python return values: convert PyObject to Lisp

objects

4.1 Retrieving the PyObject corresponding to
the python-callable

For convenience, one needs a way to retrieve PyObject instances
bound to a name given as strings. py4cl2-cffi provides the functions
pyvalue and pyvalue* to perform exactly this. Given a Python
name as a Lisp string, pyvalue* returns a cffi:foreign-pointer
pointing to the PyObject instance, while pyvalue lispifies the
PyObject instance.
2py4cl2 loads after py4cl2-cffi/config

ELS 2024 53

py4cl2-cffi: Using CPython’s C API to call Python callables from Common Lisp ELS’24, May 6–7 2024, Vienna, Austria

(defvar *py-type-lispifier-table*
(make-hash-table :test #'equal))

(defmacro define-lispifier
(name (pyobject-var) &body body)

(declare (type string name))
`(setf (gethash ,name *py-type-lispifier-table*)

(lambda (,pyobject-var) ,@body)))
(define-lispifier "int" (o)

(pyforeign-funcall "PyLong_AsLong"
:pointer o
:long))

(define-lispifier "numpy.ndarray" (o)
...)

Listing 1: The define-lispifier macro and some examples il-
lustrating the extensible functionality to convert PyObject
instances to Lisp objects.

4.2 pythonize-ing the Lisp arguments
The Python/C API provides several functions to create and interact
with PyObject instances using built-in C data types such as long,
const char*, float, and double. In pythonizers.lisp, use them
extensively to provide a generic function pythonize with several
implemented methods. Each takes in a Lisp object and returns a
cffi:foreign-pointer to a corresponding PyObject instance.

Object Handles for Unknown Lisp Objects. When there is no special-
ized method for the Lisp object, the default method of pythonize
is called. This takes in a Lisp object, creates a unique handle (an
integer) corresponding to the Lisp object, wraps the handle in an
instance of the Python class UnknownLispObject, and returns a
cffi:foreign-pointer pointing to this object. This mapping is
maintained in a cl:hash-table.

4.3 lispify-ing the Python return values
The return value of a Python callable is a cffi:foreign-pointer
to a PyObject instance. It is a new (strong) reference. The function
lispify in lispifiers.lisp takes the pointer to PyObject as
input and returns a Lisp value corresponding to the PyObject.
While pythonize is implemented as a generic function, lispify is
implemented manually as a function dispatching from the Python
type to a lambda function using a cl:hash-table. The Python
type is itself retrieved from the PyObject as a string using the
helper functions in py4cl-utils.c. Several lispifiers are provided
for the standard types, including integers, floats, strings, tuples, lists,
dicts. Users can implement additional lispifiers using the exported
define-lispifier macro.

Lisp Objects from Unknown Lisp Objects. If the PyObject is an
instance of UnknownLispObject, then the Lisp object is retrieved
from the integer handle stored in the UnknownLispObject instance.

Unknown Python Objects. When there is no lispifier for a given Py-
thon type, then the pointer to the PyObject is stored in an instance
of pyobject-wrapper. Pythonize-ing such a pyobject-wrapper
instance involves merely returning the pointer stored in the in-
stance’s slots.

4.4 Calling the Python callable with pythonized
arguments

The Python/C API provides several C functions [2] to call PyObject.
We rely on the most general PyObject_Call, which takes in a
pointer to a Python callable, a tuple of positional arguments, and
an optional dictionary of keyword arguments. It returns a pointer
to a PyObject instance if no errors occur during the execution of
the Python callable. This is a new (strong) reference. In case of an
error, PyObject_Call returns a NULL pointer.

Python error handling. The Python/CAPI function PyErr_Occurred
is used to check if an error has occurred. It returns a NULL pointer
if no error has occurred but a pointer to the exception type if an
error has occurred. In case of an error, py4cl2-cffi retrieves the error
information using PyErr_Fetch, and raises a Lisp error of class
pyerror with the Python error and traceback. Proceeding to run
more Python code without checking for the error may lead to mys-
terious failures [3]. Thus, it becomes important to check for errors
after calling a Python callable. In py4cl2-cffi, the previously men-
tioned pyforeign-funcall macro also performs error checking
before returning.

5 TYPE CORRESPONDENCE
Type conversions involved while calling a Python callable are per-
formed according to a correspondence summarized by Table 1. A
few peculiarities are raised by the overloaded semantics of cl:nil.
In Common Lisp, cl:nil is the boolean false value, the null object,
as well as the empty list. Pythonmakes a distinction between False,
None, as well as the empty tuple (). Thus, to enable the Lisp user
to disambiguate these cases of Python’s values -

(1) Python’s False value is mapped to the cl:nil Lisp value (equi-
valently the (eql nil) or the null Lisp type).

(2) Python’s None value (equivalently, objects of Python type
NoneType), are mapped to a Lisp constant +py-none+within
the py4cl2-cffi package.

(3) Python tuples are mapped to Lisp lists. This leads to the
natural mapping that empty tuples would be mapped to
Lisp’s nil. However, to avoid ambiguity with the above cases,
we map the empty tuple to +py-empty-tuple+ within the
py4cl2-cffi package.

Amongst other tasks performed to initialize the embedded Python
interpreter, (py4cl2-cffi:pystart) also binds the Lisp constants
+py-none+ and +py-empty-tuple+ to the pyobject-wrapper in-
stances corresponding to the Python values None and the empty
tuple respectively.

5.1 Customizing the type correspondence
Different users — or even different applications by the same user —
may want different type correspondences. A set of custom python-
izers may be installed using the Lisp variable *pythonizers* or the
macro with-pythonizers. A custom pythonizer maps from a Lisp
type to a Python callable. Similarly, a set of custom lispifiers may
be installed using the Lisp variable *lispifiers* or the macro
with-lispifiers. These map from a Lisp type to a Lisp function.
Listing 2 provides an example usage.

ELS 2024 54

ELS’24, May 6–7 2024, Vienna, Austria Shubhamkar Ayare

Lisp type Python type (value)
(eql nil) (False)

(eql +py-none+) NoneType (None)
integer int
rational fractions.Fraction
float float

complex complex
(or string (and symbol (not null)) str

hash-table dict
(or list (eql +py-empty-tuple+)) tuple

vector list
array numpy.ndarray

function LispCallbackObject
* UnknownLispObject

pyobject-wrapper *
Table 1: A summary of the correspondence between Lisp and
Python types. Pythonize-ing Lisp values of types given in the
right column gives PyObject instances of types given by the
left column. Lispify-ing the PyObject instances of Python
types given in the left column gives Lisp objects of Lisp types
given by the right column.

; A convenience function
(defun pyprint (object)

(pycall "print" object)
(pycall "sys.stdout.flush")
(values))

(pyprint #(1 2 3)) ; prints [1, 2, 3] ; the default object
(with-pythonizers ((vector "tuple"))

(pyprint #(1 2 3))
(pyprint 5))

; (1, 2, 3) ; coerced to tuple by the pythonizer
; 5 ; pythonizer uncalled for non-VECTOR
5

(raw-pyeval "[1, 2, 3]") ;=> #(1 2 3) ; the default lispified object
(with-lispifiers ((vector (lambda (x) (coerce (print x) 'list))))

(print (raw-pyeval "[1,2,3]"))
(print (raw-pyeval "5")))

; #(1 2 3) ; default lispified object
; (1 2 3) ; coerced to LIST by the lispifier
; 5 ; lispifier uncalled for non-VECTOR
5

Listing 2: An example usage of with-pythonizers and
with-lispifiers. Both macros take a list of overriding lispi-
fiers as the first argument. Each element of this list of two
elements: the first of which is a Lisp type, while the second
is a Python function or a Lisp function respectively.

5.2 with-remote-objects
Sometimes, converting a Python object to Lisp can be prohibit-
ively expensive. Such cases arise particularly while performing
operations on large datasets. For these cases, py4cl[9] provided
macros so that the code in the body of these macros returns an
integer handle to Lisp without converting the Python object to
Lisp. The with-remote-objects macro in py4cl2-cffi maintains
this functionality but returns a pyobject-wrapper instance instead.
pyvalue and pycall usually try to lispify the PyObject and return

a pyobject-wrapper only when a lispifier is not found. Instead,
when executed inside the body of with-remote-objects, they
always return a pyobject-wrapper.

5.3 passing array data by reference
In contrast to other data types, the data in specialized arrays in Com-
mon Lisp can be passed by reference to Python callables. Numpy’s
C API[1] provides functions such as PyArray_NewFromDescr that
take in a pointer to a block of memory (along with other arguments)
and return a pointer to PyObject denoting the numpy array. This
can be coupled with Common Lisp CFFI’s cffi:with-pointer
-to-vector-data that pins Lisp vectors and obtains a C pointer to
the vector’s data. Thus, Lisp array data can be passed by reference,
that is, without copying their data. However, the data in the output
arrays of Python callables has to be copied over to Lisp arrays. Most
Numpy functions take in an out keyword argument corresponding
to the output arrays, sidestepping this problem. For algorithms with
superlinear computational complexity, too, copying data should not
be a limitation. For convenience, function wrappers are defined in
a helper file py4cl-utils.c that convert Lisp array element types
to and from the enumerated Numpy array element types.

6 MEMORY MANAGEMENT
As discussed in section 2, several functions in the Python’s C-API
create new (strong) references to the PyObject instances. In other
cases, developers may themselves need to create the new reference
using the C function Py_IncRef. The PyObject instance is dealloc-
ated by Python only when its reference count reaches zero. Thus,
possessing a strong reference prevents the object from being deal-
located while the object is being used. Once the object is no longer
needed, its reference count must be decreased using Py_DecRef.

The Common Lisp ANSI Standard leaves memory management
up to the individual implementations. However, trivial-garbage[18]
provides a portability layer over the different implementations.

To recall, there are two ways in which PyObject instances are
converted to Lisp objects:

(1) Python to Lisp correspondence is known
(2) Python to Lisp correspondence is unknown
Both cases start out with a cffi:foreign-pointer to the in-

stance of PyObject in C. This pointer was the return value of the C
function PyObject_Call or equivalents. In the first case, the intern-
als of the PyObject instance are used to construct a corresponding
Lisp object using a lispifier. The PyObject instance is no longer
needed, thus, its reference count can be decremented immediately.
This case is handled by the with-pygc macro. Just before the top-
level with-pygc form exits, it decrements (or increments in case
of stolen references) the reference counts. This reference count
management is performed by running (pygc) only during the exit
of the toplevel with-pygc. This also means that if users are passing
around cffi:foreign-pointer, they should wrap their code in
a (with-pygc ...) form. Ignoring this, the code could result in
segmentation faults in the best case, and continue with unexpected
results in the worst case.

For instance, at the time of writing, the below code returns an
unexpected value “str”. pycall* returns a cffi:foreign-pointer
to the PyObject instance of the string "1". This pointer is initially

ELS 2024 55

py4cl2-cffi: Using CPython’s C API to call Python callables from Common Lisp ELS’24, May 6–7 2024, Vienna, Austria

bound to ptr. However, before the value of ptr returns from the
let-form, a call to (pygc) takes place which decrements the ref-
erence count of the PyObject instance to zero. This frees up the
PyObject pointed to by the ptr. The outermost (pycall "str"
...) continues to use this freed up object, leading to the unexpected
value “str”.
(pycall "str"

(let ((ptr (pycall* "str" 1)))
-- some code that results in a call to (pygc) --
ptr))

;=> "str"

But wrapping it inside (with-pygc ...) avoids prematurely
freeing up the PyObject "1" and maintains it until the toplevel
(with-pygc ...) escapes. This leads to the expected result “1”.
(with-pygc
(pycall "str"

(let ((ptr (pycall* "str" 1)))
;; (pycall* ...) returns a cffi:foreign-pointer
-- some code that results in a call to (pygc) --
ptr)))

;=> "1"

Note that the above wrapping is required only if one passes
around foreign pointers. Avoiding the requirement of wrapping
requires being able to finalize a cffi:foreign-pointer. This way,
as soon as a cffi:foreign-pointer is no longer accessible in
the Lisp environment, the reference count of the corresponding
PyObject can be incremented or decremented. But this is not
recommended[19].

The second case, when Python to Lisp correspondence is un-
known, is actually easier. In this case, an instance of pyobject-
wrapper is created with the pointer to PyObject as one of its slots.
The pyobject-wrapper instance is finalized using tg:finalize
so that when it is garbage collected by the Lisp environment, it
results in a call to the C function Py_DecRef. Note that one needs
to hold the GIL while decrementing the reference count, and that
the finalizer may be called in a different thread altogether.

Beyond the reference count management of PyObject instances,
one also needs to clear the cl:hash-table used for maintaining
the integer handles to Unknown Lisp Objects. This task is also
performed by (pygc).

7 HANDLING PYTHON’S STDOUT & STDERR
We expect one of the primary attractions of Common Lisp to be the
interactive Emacs/SLIME3 development environment [22]. Left in
its default state, the embedded Python has its stdout pointing to the
file descriptor 1 of the Lisp process. This is reasonable in the absence
of multithreading as the file descriptor 1 may also be pointing to the
Lisp REPL’s display itself. However, in multithreaded environments,
SLIME has a dedicated thread4 for the REPL and file descriptor 1
may not point to the REPL’s display.

In py4cl[9], Python’s stdout (that is, sys.stdout) is set to Py-
thon’s io.StringIO. The output is, thus, collected into a string
3We use the term ’Emacs/SLIME development environment’ as a blanket term for other
Common Lisp IDEs that enable interactive development, and hope that the solutions
employed by py4cl2-cffi for Emacs/SLIME would also be trivially applicable to them.
4See the sub-section 3.1.3 on User-interface Conventions -> Multithreading of the
SLIME User Manual version 2.24 [23].

(raw-pyexec "
import time

for i in range(5):
print(i)
sys.stdout.flush()
time.sleep(1)")

Listing 3: Example code demonstrating the need for cap-
turing Python output asynchronously. See the text for an
accompanying explanation.

during the evaluation or execution of a Python expression or state-
ment. After the evaluation or execution is complete, the output is
then sent to Lisp, where it is then sent to cl:*standard-output*.
This allows
(cl:with-output-to-string (*standard-output*)

...)

to behave as expected and capture the Python output emitted inside
the cl:with-output-to-string form. On the other hand, this has
the disadvantage that the Python’s output is unavailable to the Lisp
user before the complete evaluation or execution of the Python
expression or statements. See Listing 3 for an example. If a piece of
code takes too long or loops infinitely, it is convenient to know its
intermediate output even if the execution is incomplete.

Thus, in py4cl2-cffi, we redirect the embedded Python’s stdout
to a named pipe. We read the contents of the named pipe from
a separate Lisp thread and print its contents to the stream indic-
ated by the initial value of cl:*standard-output* of the thread
calling (pystart). This allows the Python’s output to be available
to the Lisp user even if the processing is incomplete on the Py-
thon side. However, on certain implementations including SBCL
cl:with-output-to-string establishes local bindings through a
cl:let. This locally modified binding of cl:*standard-output*
may not be visible from the separate Python output thread. Thus,
this approach requires a dedicated functionality to obtain the Py-
thon output as a string.

with-python-output
The functionality to obtain Python output as a string is implemented
as a macro with-python-output. This enables one to obtain the
Python output as Lisp strings.
(with-python-output

(pycall "print" "hello" :end ""))
;=> "hello"

However, this facility currently depends on a system of sem-
aphores and locks interoperating correctly, and might be more
complicated and prone to errors than is necessary. Listing 4 sum-
marizes the algorithms followed by the two threads involved in
output processing of stdout.

with-python-error-output
Similar arguments hold for the Python error messages sent to stderr
(that is, sys.stderr). In this case, the equivalent functionality is
provided through the with-python-error-output macro.

ELS 2024 56

ELS’24, May 6–7 2024, Vienna, Austria Shubhamkar Ayare

Shared resources:
A counter: in-with-python-count # initialized to 0
A recursive lock: count-lock # accompanying the counter
Two semaphores: start-semaphore, end-semaphore
An input stream: py-stream
an input stream from a named pipe to which
python writes its output

Two output stream:
default-output-stream, with-python-stream

python-output-thread:
The thread that reads python output from the named pipe
and prints the output to the lisp
loop:
if in-with-python-count == 0:

We are outside all of the with-python-output form
peek(py-stream) # wait for input
if in-with-python-count == 0:
Check if we are still outside all of the
with-python-output forms
char = read_char(py-stream)
write_char(char, default-output-stream)

else:
without-python-gil:
wait(start-semaphore)

loop while listen(py-stream):
char := read_char(py-stream)
write_char(char, with-python-stream)

signal(end-semaphore)
without-python-gil:
with-recursive-lock-held(count-lock):
decf(in-with-python-count)

Thread executing (with-python-output &body body):
Thread in which the (with-python-output ...) form runs
with-python-stream := make_string_output_stream()
without-python-gil:
with-recursive-lock-held(count-lock):

incf(in-with-python-count)
-- body --
signal(start-semaphore)
without-python-gil:
wait(end-semaphore)

OUTPUT := get_output_stream_string(with-python-stream)

Listing 4: Algorithms used by python-output-thread and the
thread executing with-python-output. The OUTPUT is the
output of the form (with-python-output ...) executed by the
second thread.

8 PYTHON CALLABLES AS LISP FUNCTIONS,
PYTHON MODULES AS LISP PACKAGES

py4cl[9] provides an import-functionmacro to define a Lisp func-
tion to call a Python callable. It also provides an import-module
macro to define a Lisp package corresponding to a Python module.
Such a Lisp package contains symbols fbound to Lisp functions
that call Python callables in the corresponding module. This func-
tionality is enabled by the inspect module of Python that ships
with its standard library. import-module of py4cl is renamed to
defpymodule in py4cl2[7] and py4cl2-cffi to signify that a certain

something — a Lisp package — is being defined. py4cl2 and py4cl2-
cffi use further introspection facilities of Python and perform three
additions (i) import parameter list of the functions (ii) define pack-
ages recursively to access submodules (iii) add helper code to reim-
port functions or modules when the Python process is restarted (in
py4cl2) or embedded Python’s state is cleaned (in py4cl2-cffi).

8.1 Importing parameter lists of functions
The inspect.signature Python function takes in a Python callable
and returns a inspect.Signature object containing the parameter
list of the callable. Processing the inspect.Signature object al-
lows preparing the parameter list for the Lisp function. There are
several considerations, however:

(1) Python callables can take in a variable number of positional
arguments and a variable number of keyword arguments at
the same time. In contrast, Lisp functions only allow either
a variable number of positional arguments or a variable
number of keyword arguments but not both. Thus, a Lisp
function calling such a Python callable has its parameter list
given by the default (&rest args).

(2) In some cases, such as when the Python callable is a built-in
function defined in C, they may not have a signature. In this
case too, the Lisp function calling the Python callable has
the parameter list given by the default (&rest args).

(3) Python is case-sensitive, while the Lisp reader is case insens-
itive by default. Thus, it is possible for a Python function to
have arguments which map to the same Lisp name.

Many functions in the Python package numpy are also subject to
the second consideration above. These functions are instances of
numpy.ufunc. But, user convenience demands that the Lisp func-
tions calling these functions should have their parameter lists more
specific than the default (&rest args). To handle this case in general,
py4cl2 and py4cl2-cffi provide a generic function %get-arg-list
which specializes on its first argument. This first argument is the
name of the type of the Python callable converted to a Lisp keyword.
This allows for the implementation of callable-type-specific logic
to derive the parameter list of the function.

8.2 Defining packages recursively to access
submodules

The defpymodule macro provided by py4cl2 and py4cl2-cffi take
in an optional argument import-submodules. If this argument is
non-NIL, defpymodule calls the helper function defpysubmodules.
This helper function uses the pkgutil Python module along with
some inspection and recursion to define further submodules if
required, as in the case of Python packages5.

8.3 Helper code for reimport
Experience suggests that Python is restarted more often than Lisp.
Thus, Lisp code bridging to Python should consider that the Python
interpreter might be in a fresh state and the Python function or
module may not have been imported yet.
5Python packages are a collection of Python modules. Each Python module is a distinct
Python file.

ELS 2024 57

py4cl2-cffi: Using CPython’s C API to call Python callables from Common Lisp ELS’24, May 6–7 2024, Vienna, Austria

Pyt
ho

n

PyC
all.

jl

bu
rgl

ed
-ba

ttte
rie

s3

py
4cl

 (S
BC

L)

py
4cl

2-c
ffi

(SB
CL 2

.3.
11

)

py
4cl

2-c
ffi

(SB
CL 1

.5.
4)

py
4cl

2-c
ffi

(CCL)
0

1

2

3

4

5

6

7

lo
g 1

0 o
f n

um
be

r o
f p

yt
ho

n
ca

lls
 p

er
 se

co
nd 1.0 × 106

(x1)
3.2 × 105

(x3)

1.7 × 104

(x60)
4.0 × 103

(x250)

5.0 × 104

(x20)
4.5 × 104

(x22) 1.6 × 104

(x62)

1.6 × 106

(x1)
5.0 × 105

(x3) 2.6 × 105

(x6)
2.6 × 105

(x6)
7.2 × 104

(x22)

PyObject_Call
PyObject_Str

Figure 1: Performance comparison of calling CPython nat-
ively against several libraries and platforms. Numbers inside
brackets indicate the degree of slowness compared to native
CPython — thus, x3 means 3 times as slow as using CPython
directly. x20 means 20 times as slow.

9 PERFORMANCE
The prime reason for developing py4cl2-cffi has been performance.
Two main ways to call Python callable have been considered. The
one involving the Python/C API function PyObject_Call is the
most generic and allows calling any Python callable. The partic-
ular situation we test is using the Python callable str to convert
an integer to a string. However, this particular task can also be
performed by PyObject_Str. As Figure 1 shows, this can be sub-
stantially faster than calling PyObject_Call.

The CPU frequency was locked to 0.8GHz using the cpufreq-set
of cpufreq-utils. burgled-batteries3 used SBCL 1.5.4 and python3.6.
The performance of py4cl2-cffi was measured for both SBCL 1.5.4
and python3.6 as well as SBCL 2.3.11 and python3.10. The others
used SBCL 2.3.11 or CCL 1.12.2 and python3.10. PyCall.jl[17] used
Julia 1.10.

The overall code for measuring the performance is in the perf-
compare/ directory in the project root6. Listing 5 demonstrates
loading this performance data using pandas and using it to plot
Figure 1 using matplotlib.

10 LIMITATIONS AND FUTUREWORK
Even though py4cl2-cffi achieves a number of tasks marked as “To
Do” in burgled-batteries[11], it still has a number of limitations
which we discuss below.

10.1 Limited to Unix-based OS
The Continuous Integration set up for py4cl2-cffi using Github
Actions tests py4cl2-cffi on SBCL, CCL, and ECL, thus providing a
reasonable amount of portability across the Lisp implementations.
On the other hand, this portability is limited to Unix-based operat-
ing systems, and particularly Linux and MacOS. Porting py4cl2-cffi
to other operating systems requires more work. Alternatively, OS
independent facilities need to be used.
6See https://github.com/digikar99/py4cl2-cffi/tree/master/perf-compare.

(defpackage #:python-call-performance
(:use :cl)
(:local-nicknames (#:py #:py4cl2-cffi)

(#:a #:alexandria)))
(in-package #:python-call-performance)

(py:defpymodule "matplotlib.pyplot" nil :lisp-package "PLT")
(float-features:with-float-traps-masked t

(py:raw-pyexec "
import numpy as np
import pandas as pd

def read_csv_file(filename):
with open(filename) as f:

return pd.read_csv(f)
"))

(defvar *performance-data*
(py:pycall "read_csv_file"

(namestring
(merge-pathnames "perf-compare/perf.csv"

(asdf:system-source-file
(asdf:find-system "py4cl2-cffi"))))))

(defun plot-performances (data)
(let* ((data-labels

(py:pycall "tuple" (py:pyref data "Platform or Library")))
(object-call-values

(py:pycall "tuple" (py:pyref data "PyObject_Call")))
(str-call-values

(py:pycall "tuple" (py:pyref data "PyObject_Str")))
(xloc

(a:iota (length data-labels))))
(float-features:with-float-traps-masked t

(flet ((0.2- (x) (- x 0.2))
(0.2+ (x) (+ x 0.2))
(log10 (n) (log n 10))
(value-to-labels (values)

(mapcar (lambda (value)
(when (and (floatp value)

(float-features:float-nan-p value))
(setq value 1))

(multiple-value-bind (int decimal-part)
(floor (log value 10))

(format nil "$~,1F \\times 10^{~D}$~%(x~D)"
(expt 10 decimal-part)
int
(floor (first values) value))))

values)))
(plt:figure :figsize (list 960/80 720/80) :layout "constrained")
(plt:ylim 0 7)
(plt:bar-label
:container (plt:bar :x (mapcar #'0.2- xloc)

:height (mapcar #'log10 object-call-values)
:width 0.4
:label "PyObject_Call")

:labels (value-to-labels object-call-values)
:fontsize 14)
(plt:bar-label
:container (plt:bar :x (mapcar #'0.2+ xloc)

:height (mapcar #'log10 str-call-values)
:width 0.4
:label "PyObject_Str")

:labels (value-to-labels str-call-values)
:fontsize 14)

(plt:xticks xloc data-labels :rotation 45
:fontsize 16)

(plt:ylabel "\log_{10} of number of python calls per second"
:fontsize 18)

(plt:legend :loc "upper right" :fontsize 16)
(plt:show)))))

(plot-performances *performance-data*)

Listing 5: A demonstration of using py4cl2-cffi to load data
using pandas and plotting it using matplotlib.

ELS 2024 58

ELS’24, May 6–7 2024, Vienna, Austria Shubhamkar Ayare

10.2 A difference of case (in)sensitivity
Common Lisp reader is case insensitive by default, while Python is
case sensitive. This causes name translations to jump through a few
hoops, making the integration less than ideal. While the Common
Lisp reader can be made case sensitive using the :modern readtable
provided by named-readtables[21], there is also a limitation of
tooling. In particular, for both functions below, SLIME displays
the lowercase (foo &key a b) for both of them, making the two
indistinguishable.

(defun foo (&key a b) (+ a b))
(defun |foo| (&key |a| b) (+ |a| b))

It remains to be seen how other Common Lisp IDEs such as Intellij[10]
and Alive on VS Code[15] behave in this regard.

10.3 Performance
From Figure 1, we note that even though py4cl2-cffi might be 10
times faster than py4cl, given the performance of PyCall.jl there is
significant scope of improvement. Going by the steps outlined in
section 4, several optimizations are visible

(1) If we can assume that the pointer to a Python callable will
remain unchanged, the pointer can be fetched from the name
at compile time.

(2) If the type of Lisp or Python arguments is known, then a
dynamic dispatch on pythonizers or lispifiers can be avoided.

However, beyond these, one may need to look into the particularit-
ies to see where the performance disparities between py4cl2-cffi
and PyCall.jl stem from.

10.4 Floating point traps and signal handling
The author of burgled-batteries[12] highlighted that Lisp environ-
ments and CPython environments can differ on low-level details
such as floating point traps and signal handling. The author of
py4cl2-cffi has certainly run into issues concerning floating point
errors, but the float-features compatibility library[13] has been help-
ful in sidestepping these issues. Issues about signal handling remain
to be encountered. Both these issues require a fuller treatment for
more robust Python calls.

10.5 Python ecosystem can inherently oppose
multithreading

Python packages (including matplotlib) expect their callables to
be called from a single “main” thread in their default setting. This
is at odds with Lisp IDEs which are often multithreaded. Thus,
one may need to consider unithreaded approaches to calling Py-
thon callables. Currently, an experimental system and package
py4cl2-cffi/single-threaded is provided for this purpose.More
testing is required.

11 CONCLUSION
We hope that describing the approach of py4cl2-cffi can help other
lispers adopt it for their own use cases. Working towards the lim-
itations outlined here should help make Common Lisp easier for
exploratory research even in modern times.

ACKNOWLEDGMENTS
I’d like to express my gratitude to Ben Dudson for py4cl which has
served me well and provided a base for both py4cl2 and py4cl2-cffi.
The tests for py4cl2-cffi are still based upon the extensive tests for
py4cl written by Ben Dudson. py4cl was itself inspired by the cl4py
project by Marco Heisig. py4cl2-cffi has received contributions git-
hub users ‘enometh’ and ‘jcguu95’ as well as from Paul Landes and
Robert Brown. Finally, I’d like to thank Marco Heisig (once again!)
and Robert Smith for useful guidance on citations and footnotes in
the context of this manuscript and the ELS.

REFERENCES
[1] NumPy C-API; NumPy v1.26 Manual — numpy.org. https://numpy.org/doc/

stable/reference/c-api/index.html. [Accessed 06-02-2024].
[2] Call Protocol — docs.python.org. https://docs.python.org/3/c-api/call.html#c.

PyObject_Call, . [Accessed 16-02-2024].
[3] Exception Handling — docs.python.org. https://docs.python.org/3/c-api/

exceptions.html, . [Accessed 16-02-2024].
[4] Initialization, Finalization, and Threads — docs.python.org. https://docs.python.

org/3/c-api/init.html, . [Accessed 18-02-2024].
[5] Python/C API Reference Manual — docs.python.org. https://docs.python.org/3/c-

api/index.html, . [Accessed 11-01-2024].
[6] Alexander Artemenko and et al. GitHub - ultralisp/ultralisp: The software be-

hind a ultralisp.org common lisp repository — github.com. https://github.com/
ultralisp/ultralisp. [Accessed 17-04-2024].

[7] Shubhamkar Ayare, Ben Dudson, Jin, Robert P. Goldman, and Github user -
death. GitHub - digikar99/py4cl2: Call python from Common Lisp — github.com.
https://github.com/digikar99/py4cl2. [Accessed 08-01-2024].

[8] Willem Broekema. CLPython - an implementation of Python in Common Lisp
— clpython.common-lisp.dev. https://clpython.common-lisp.dev/. [Accessed
04-02-2024].

[9] Ben Dudson, Shubhamkar Ayare, Jason Ruchti, and Github User - akanouras.
GitHub - bendudson/py4cl: Call python from Common Lisp — github.com. https:
//github.com/bendudson/py4cl. [Accessed 08-01-2024].

[10] Enerccio and Peter Vanusanik. GitHub - Enerccio/SLT: SLT is an IDE Plu-
gin for Itellij/Jetbrains IDE lineup implementing support for Common Lisp via
Slime/Swank and supported lisp interpret. — github.com. https://github.com/
Enerccio/SLT/. [Accessed 11-01-2024].

[11] Github user - pinterface. GitHub - pinterface/burgled-batteries: A bridge between
Python and Lisp (FFI bindings, etc.) — github.com. https://github.com/pinterface/
burgled-batteries, . [Accessed 11-01-2024].

[12] Github user - pinterface. Is this project abandoned? - pinterface/burgled-batteries
— github.com. https://github.com/pinterface/burgled-batteries/issues/15, . [Ac-
cessed 11-01-2024].

[13] Yukari Hafner. GitHub - shinmera/float-features: Portability library for ieee
float features that are not covered by the cl standard. — github.com. https:
//github.com/Shinmera/float-features. [Accessed 17-02-2024].

[14] Yukari Hafner, TarnW. Burton, S.MMukarram Nainar, Marco Antoniotti, Karsten
Poeck, Michael "phoe" Herda, and Paul M. Rodriguez. Common Lisp Portability
Library Status — portability.cl. https://portability.cl/. [Accessed 11-01-2024].

[15] Rich Heller. Alive - the average lisp vscode environment. https://marketplace.
visualstudio.com/items?itemName=rheller.alive. [Accessed 11-01-2024].

[16] Michał “phoe” Herda. The Common Lisp Condition System: Beyond Exception
Handling with Control Flow Mechanisms. Apress, 2020. ISBN 9781484261347. doi:
10.1007/978-1-4842-6134-7. URL http://dx.doi.org/10.1007/978-1-4842-6134-7.

[17] Steven G. Johnson and et al. GitHub - JuliaPy/PyCall.jl: Package to call Python
functions from the Julia language — github.com. https://github.com/JuliaPy/
PyCall.jl. [Accessed 11-01-2024].

[18] Luis Oliveira and et al. Trivial Garbage — trivial-garbage.common-lisp.dev.
https://trivial-garbage.common-lisp.dev/. [Accessed 14-01-2024].

[19] Paul Khuong. Finalizing foreign pointers just late enough - Paul Khuong mostly
on Lisp — pvk.ca. https://pvk.ca/Blog/Lisp/finalizing_foreign_pointers_just_late_
enough.html. [Accessed 17-04-2024].

[20] Kent Pitman. Common Lisp HyperSpec (TM) — clhs.lisp.se. http://clhs.lisp.se/,
1996. [Accessed 11-01-2024].

[21] Tobias C. Rittweiler and Gábor Melis. GitHub - melisgl/named-readtables —
github.com. https://github.com/melisgl/named-readtables. [Accessed 17-02-
2024].

[22] SLIME Contributors. GitHub - slime/slime: The Superior Lisp Interaction Mode
for Emacs — github.com. https://github.com/slime/slime. [Accessed 11-01-2024].

[23] SLIME Contributors. Slime user manual - version 2.24. https://slime.common-
lisp.dev/doc/slime.pdf, 2020. [Accessed 16-02-2024].

ELS 2024 59

Qlot, a project-local library installer
Eitaro Fukamachi

e.fukamachi@mailfence.com
Tokyo, Japan

ABSTRACT
AlthoughQuicklisp stands as the predominant Common Lisp library
manager, the absence of library versions poses a significant chal-
lenge for developers managing applications. A common solution
involves downloading libraries individually, yet this approach in-
troduces another obstacle: ensuring consistent dependencies across
various environments, particularly in collaborative development
settings.

Qlot is a tool that installs libraries that are not registered or
different versions of Quicklisp, making it easy to reproduce the
same set of libraries in all environments.

The main purpose of this paper is to explain why Qlot is impor-
tant, its usage, its internal design, and how it differs from other
tools and methods.

CCS CONCEPTS
• Software and its engineering→ Software maintenance tools.

KEYWORDS
Common Lisp, Quicklisp, dependency manager
ACM Reference Format:
Eitaro Fukamachi. 2024. Qlot, a project-local library installer. In Proceedings
of the 17th European Lisp Symposium (ELS’24). ACM, New York, NY, USA,
5 pages. https://doi.org/10.5281/zenodo.10949389

1 INTRODUCTION
1.1 Background of Quicklisp age
Quicklisp[1] is a de facto library installer for Common Lisp and
a central registry server for distributing Common Lisp libraries.
However, it lacks a function considered essential in similar products
in other languages – "versioning". For example, Python’s PyPI[2]
and Ruby’s RubyGems[3] manage versions for each library, allow-
ing the installation of a specific version. Unlike others, Quicklisp
has versions of “dists” — a distribution set of registered projects —
updated every few months. When changing the version of dist, all
installed libraries can be changed.

It is not because of the negligence of Quicklisp’s author. It is due
to a historical background of Common Lisp: a lot of Common Lisp
libraries were published before Quicklisp became available. There
were many useful but inactive products when Quicklisp was made.
If Quicklisp had abandoned them at its Genesis, it would not be
used as it is today. Therefore, Quicklisp could not obligate authors

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.10949389

of those libraries to follow certain rules of release processes and
metadata for better management. Nonetheless, Quicklisp had to
distribute them without any community consensus.

1.2 Problems
Quicklisp only has a date of dists as a version, like a snapshot. Such
a situation leads to difficulties for application developers. Supposing
a bug is found in a dependent library and the fixed version has been
released at its upstream git repository. Until it is available in the
next update of Quicklisp, it has to be manually downloaded to a
place where ASDF[4] can find it, such as in ~/common-lisp.

Although it is commonly used in many projects, it has two prob-
lems.

First, it is a user-wide configuration shared acrossmultiple projects
on the same machine. If one project requires upgrading a library,
all projects in the machine are affected.

Second, ensuring that all environments running the product use
the same set of dependencies is difficult. Very few projects run in
a single environment. A project developed by multiple developers
has to run on all collaborator’s machines. Web applications have
a production environment where the application will finally be
deployed. In the case of distributed software, it must run on more
than one machine. Same with CI environments.

There is a myth that the Common Lisp specifications remains
standardized and functional even after several years have passed.
However, this is only true if it does not rely on any external libraries.
To verify this, one can easily confirm by trying to run modern code
against an old Quicklisp distribution.

1.3 git submodules as a partial solution
Using git submodules[5] can be an option to manage dependent
libraries. It adds another git repository to the project as a subdirec-
tory. Given that many Common Lisp projects are hosted on GitHub
and GitLab1, this seems like a simpler way to do it than introducing
a new tool.

However, dependencies must be managed manually, including
dependencies of dependencies. If only direct dependencies are man-
aged as submodules, the compatibility of indirect ones will not be
guaranteed. If using Quicklisp, it is necessary to keep the version
of its dist the same. If there are libraries with the same name but a
different version in the ASDF load path, such as in ~/common-lisp,
it will unintentionally be loaded.

It is tiresome to list all dependencies, find out their provenances
and add them as git submodules. Consider when updating a depen-
dent library and its dependencies have been changed. It requires to
do the same steps again.

1Currently 4,632 projects are registered in the latest Quicklisp dist "2023-10-21", of
which 4,083 (88%) are hosted on GitHub, and 220 (4.7%) are on GitLab (including
gitlab.common-lisp.net).

ELS 2024 60

ELS’24, May 6–7 2024, Vienna, Austria Eitaro Fukamachi

git submodules seems simple at first glance, but there are many
things to be concerned about as above.

1.4 Qlot as another solution
Qlot is a tool to solve the problems mentioned in section 1.2. Qlot
manages assets installed by Quicklisp for each project, not for each
user.

In addition, Qlot also exports information about installed li-
braries and their respective versions to a file. This feature simplifies
the sharing of library configurations across different environments,
allowing users to effortlessly rebuild the same set of libraries on
any system with just a single command.

2 GETTING STARTED
2.1 Prerequisites
Qlot requires SBCL and OpenSSL. This does not mean that users’
projects are limited to SBCL since Qlot is an external tool and is
not necessary while running the main programs.

curl or wget are optional requirements, needed only to use Qlot’s
Automatic Installer. git is also needed only to install from git repos-
itories.

Linux
sudo apt install -y libssl-dev git
macOS
brew install openssl git

2.2 Installation
The easiest way to install Qlot is to use the Automatic Installer.
Here is a command to fetch and run it at once:

curl -L https://qlot.tech/installer | sh

It installs Qlot at ~/.qlot and places a shell command to ~/.qlot
/bin. Be sure the directory path is in PATH of the running shell. It is
not necessary if XDG_BIN_HOME is set, as it will be copied there.

qlot --help
Usage: qlot COMMAND [ARGS..]

COMMANDS:
init Initialize a project to start using Qlot.
install Install libraries to './.qlot'.
update Update specific libraries and rewrite

their versions in 'qlfile.lock'.
add Add a new library to qlfile and trigger '

qlot install'.
remove Remove specific projects from 'qlfile' and

trigger 'qlot install'.
check Verify if dependencies are satisfied.
exec Invoke the following shell-command with

the project local Quicklisp.
bundle Bundle project dependencies to './.bundle-

libs'.

GLOBAL OPTIONS:
--dir <directory>

Directory to run the Qlot command
--no-color

Don't colorize the output

TOPLEVEL OPTIONS:
--version

Show the Qlot version
--help

Show help

Run 'qlot COMMAND --help' for more information on a
subcommand.

The REPL interface has been added since v1.5.0, though it is still
experimental. This paper explains based on the shell interface.

2.3 Start using Qlot
To start using Qlot, execute the following command:

qlot init

It creates qlfile and adds .qlot to .gitignore if it is a git repos-
itory, not to track the directory by git. qlfile is a file contains
details of additional dependencies. Its initial content is empty.

It can take --dist option to add a custom Quicklisp dist, such as
Ultralisp[6]:

qlot init --dist https://dist.ultralisp.org

Finally, run qlot install to set up a project-local Quicklisp.
qlot install

This command will install the latest Quicklisp dist in the .qlot/
directory and write versions of libraries to qlfile.lock.

It is also used to synchronize up dependencies when different
programmers updates qlfile.lock. See section 2.6 "Version lock
and upgrade" for this topic.

2.4 Invoke REPL
To use the project-local Quicklisp, run qlot exec followed by a
command to start Lisp.

qlot exec sbcl
CL-USER> ql:*quicklisp-home*
/path/to/project/.qlot/

The command following qlot exec has to be one of sbcl, ecl,
abcl, clasp, clisp, alisp, or ros. If a different Lisp implementation
is desired, it is mandatory to start the Lisp interpreter and load
.qlot/setup.lisp.

For example, if Clasp was not supported by qlot exec. Only
then Clasp can be started with Qlot by doing clasp --load .qlot

/setup.lisp.
To run on Emacs/SLIME, add the qlot exec command in a list

of slime-lisp-implementations:
(setq slime-lisp-implementations

'((sbcl ("sbcl") :coding-system utf-8-unix)
(qlot ("qlot" "exec" "sbcl") :coding-system utf

-8-unix)))

In this way, it can be treated the same way as specifying a Lisp
implementation. Use M-- M-x slime RET qlot RET to invoke a new
SLIME buffer.

2.5 Dependency management
Qlot not only sets up the project-local Quicklisp that will not be af-
fected by the global one but also enables the installation of libraries
from git repositories and allows the specification of particular li-
brary versions.

To install a new library of a specific version, use qlot add:
qlot add mito

ELS 2024 61

Qlot, a project-local library installer ELS’24, May 6–7 2024, Vienna, Austria

It adds the version of Mito included in the latest Quicklisp dist.
This is not so useful if a newer version is available and not included
in the latest dist yet. To install from git, you can use the --upstream
option. It identifies the upstream repository URL of the library from
Quickdocs API[7] and downloads the latest version. This requires
git to be installed.

qlot add mito --upstream

Qlot also accepts the format <username>/<repository> to install
from GitHub, which is useful to use a forked one.

qlot add fukamachi/mito
qlot add fukamachi/mito --branch next

To install from a git repository hosted other than GitHub is a bit
verbose, but can be done as follows:

qlot add git iterate https://gitlab.common-lisp.net/
iterate/iterate

qlot add git iterate https://gitlab.common-lisp.net/
iterate/iterate \

--branch release

To delete a dependency, use qlot remove:

qlot remove mito

2.6 Version lock and upgrade
The version information at the time qlot install runs is recorded
in qlfile.lock placed in the project’s root directory.

For example, the contents of qlfile.lock look like this:

("quicklisp" .
(:class qlot/source/dist:source-dist
:initargs (:distribution "https://beta.quicklisp..."

:%version :latest)
:version "2023-10-21"))

("mito" .
(:class qlot/source/ql:source-ql-upstream
:initargs nil
:version "ql-upstream-53250af300b18c..."
:remote-url "https://github.com/fukamachi/mito.git"))

qlfile and qlfile.lock are a pair of files that are needed to
reproduce the environment. When these files are changed, qlot
install applies the changes to .qlot/. When a different collabora-
tor edits those files, do not forget to synchronize each machine’s
environment with this command. Even when there are newer ver-
sions at that time, Qlot always installs the same versions.

To upgrade to the latest one, run qlot update like:

qlot update mito

This command updates qlfile.lock if upgraded.

2.7 Loading local forks
In cases where developers want to use a locally cloned project mod-
ified slightly, Quicklisp’s local-projectsmechanism is handy. In a
project-local Quicklisp, libraries at .qlot/local-projects, includ-
ing symbolic links, can also be loaded.

ln -s ~/projects/mito .qlot/local-projects

2.8 Minimize footprint
In some projects, Quicklisp client should not be included in an
execution process for reasons such as saving memory. qlot bundle

outputs only the source code of the dependent libraries under the
.bundle-libs/ directory.

qlot bundle

Load .bundle-libs/bundle.lisp instead of .qlot/setup.lisp
to load them without using Quicklisp and Qlot.

sbcl --load .bundle-libs/bundle.lisp

See also the documentation of Quicklisp about ql:bundle-systems
[8] for the details since this feature is built on top of it.

3 A BIT OF INTERNAL DETAILS
3.1 Libraries as Quicklisp dists
Installation of dependent libraries is the core feature of Qlot. Quick-
lisp has a mechanism called "local-projects" that allows to load
libraries that are not registered in the dist. When a library is placed
under the local-projects directory in Quicklisp’s home, it is priori-
tized over libraries registered in Quicklisp.[9]

However, Qlot does not use this feature; instead, Quicklisp uses
"dist" to manage external libraries. Quicklisp has a feature to install
unofficial dists, such as Ultralisp, which provides a different set of
libraries. Qlot is "abusing" it.

CL-USER> (ql-dist:all-dists)
(#<QL-DIST:DIST mito git-53250af300b18cfe956cbe26...>
#<QL-DIST:DIST quicklisp 2023-10-21>)

The advantage of this design is that functions for inspecting
library information in Quicklisp, such as ql:provided-systems and
ql-dist:required-systems, are accessible even within the project-
local Quicklisp.

CL-USER> (ql:provided-systems
(ql-dist:find-release "mito"))

(#<QL-DIST:SYSTEM lack-middleware-mito / mito-ref...>
#<QL-DIST:SYSTEM mito-core / mito-ref-53250af300...>
#<QL-DIST:SYSTEM mito-migration / mito-ref-53250...>
#<QL-DIST:SYSTEM mito-test / mito-ref-53250af300...>
#<QL-DIST:SYSTEM mito / mito-ref-53250af300b18cf...>)

CL-USER> (ql-dist:required-systems
(ql-dist:find-system "mito"))

("cl-reexport" "lack-middleware-mito"
"mito-core" "mito-migration")

Other notable examples that check dependencies are ql:who-

depends-on and ql-dist:dependency-tree. Similar functions are
provided by ASDF, but Quicklisp ones are much faster because they
calculate dependencies based on pre-generated metadata.

3.2 HTTPS support
Quicklisp client is written in pure Common Lisp without relying
on any external libraries to avoid affecting the user’s application.
Because of this policy, HTTPS support has been left due to the
difficulty of implementing the HTTPS protocol solely in Common
Lisp, though the server side of Quicklisp allows HTTPS access.

Thanks to extensibility of Quicklisp, Qlot adds it without modi-
fying the code by using local-init and ql-http:*fetch-scheme-

functions*.

ELS 2024 62

ELS’24, May 6–7 2024, Vienna, Austria Eitaro Fukamachi

ql-http:*fetch-scheme-functions* is an association list hold-
ing pairs of supported HTTP schemes and functions to fetch. The
default list has only one for HTTP. Qlot adds a pair for HTTPS in
local-init that loads all Lisp files in local-init/ directory in the
Quicklisp home.

CL-USER> ql-http:*fetch-scheme-functions*
(("https" . QLOT/LOCAL-INIT/HTTPS::RUN-FETCH)
("http" . QLOT/LOCAL-INIT/HTTPS::RUN-FETCH)
("http" . QL-HTTP:HTTP-FETCH))

Since this function downloads files in a different process, it does
not affect the user’s application in the main process, even though
it uses external libraries.

4 TECHNICAL CHALLENGES
4.1 How to determine dependencies
As mentioned in section 3.1, Qlot sets up each library as a Quick-
lisp’s dist and requires finding their dependencies. Simply thinking,
it seems that usingASDF’s asdf:component-sideway-dependencies
would suffice. However, using ASDF’s inspection functionalities
proves difficulties due to its requirement for loading system def-
initions in the running Lisp image. This is because ASDF is an
in-image build tool, unlike equivalents for other languages.[10]

For example, ASDF offers an option :defsystem-depends-on, en-
abling the specification of dependencies for the system definition
itself. It is necessary to load the dependencies before reading the sys-
tem definition, but the problem is where to load them. Although it
should be installed from a project-local Quicklisp in the philosophy
of Qlot, it does not exist yet.

Thus, it requires identifying dependencies by code-walking their
ASDF system definitions. In most cases, it can be resolved simply
by combining :depends-on and :defsystem-depends-on. However,
in some cases, it may present challenges.

First, ASDF can include any Lisp code in ASD files. Some appli-
cations take advantage of this permissiveness of ASDF and dynam-
ically load external libraries in their ASD files. It leads to the same
problem :defsystem-depends-on has.

Second, ASDF’s package-inferred-system is an ASDF extension
that supports one-package-per-file style.[11] If :class :package

-inferred-system is specified in the main system definition, all
Lisp files in the project can be a sub-system with defpackage at
the top of files. Qlot attempts to read all Lisp files that are possibly
sub-system definitions, but it has the same problem as the ASD file
since it can also contain any Lisp code.

Third, Qlot can not handle ASDF extensions other than package-
inferred-system. ASDF allows to make a custom system class that
inherits asdf:system by specifying :class to defsystem. Qlot ig-
nores it because Qlot can not load any libraries while looking up
dependencies due to the abovementioned problem. If the ASDF
extension manipulates dependent libraries or inherits package-

inferred-system, it will not work as expected.

4.2 REPL interface
Working with a REPL is one of the best parts of Quicklisp. Users
can install libraries without leaving the REPL. On the other hand,
Qlot provides command-line interface as the primary one, and its
REPL interface is still experimental.

This is due to a design difference between Qlot and Quicklisp.
Quicklisp runs in the main Lisp process, as does ASDF. While this
has advantages in terms of use, seamless interaction, and speed, it
also pollutes the user’s process, as discussed in 3.2.

Qlot uses Dexador[12], an HTTP client, to communicate over
HTTPS. If Qlot is run in the main process like Quicklisp, there
is a possibility that its version conflicts with a user application’s
dependencies. Conversely, Qlot runs mainly in a separate process.

Of course, this model has its drawbacks. The most significant
one is that the Common Lisp debugger cannot be used on errors,
such as handling by condition class, and restarts.

Presently, the primary focus of Qlot development is on exchang-
ing information between processes about errors to show useful
messages and to provide restarts as its interface. This will make the
usability in the REPL closer to Quicklisp.

5 COMPARED TO OTHER TOOLS
5.1 Quick-Patch
Quick-Patch[13] is a simple tool intended to replace git submodules.
It is similar in the way that it complements Quicklisp but does not
separate environments for each project like Qlot. Hence, it presents
a similar issue to that git submodules.

5.2 CLPM
CLPM[14] is a similar tool developed after Qlot was out, but it
has a different design philosophy and has a "develop-from-scratch"
approach.

It was originally developed to replace the distribution service of
Quicklisp with CLPI (Common Lisp Project Index)[15], and CLPM
is the name of its client. It can keep multiple ASDF settings and
switch them for each environment. In that sense, it is similar to
Python’s virtualenv[16].

In the past, CLPM had unique features, such as loading local
libraries and downloading via HTTPS, but these are now imple-
mented in Qlot. CLPM also imported a project-local version-locking
mechanism from Qlot and suspended the original goal which was
to substitute Quicklisp dist. Now, they are almost the same in func-
tionality.

The only differences are usability and learning cost, which cannot
be ignored in team development. Qlot enhances them by adopting
a well-known Quicklisp client instead of a dedicated one.

5.3 ocicl
ocicl[17] is a tool to replace the Quicklisp registry in the same spirit
as CLPM and CLPI. It packages each project in Open Container Ini-
tiative (OCI)[18] manner. ocicl already has its registry system built
on GitHub Container Registry that instantly updates on changes of
projects, whereas CLPI is still under development.

However, from a client perspective, it doesn’t offer as many fea-
tures. Similar to Quick-Patch, it downloads and only places libraries
in a certain directory and does not have a mechanism to isolate the
project from others. There is no capability to install libraries from
VCS, and certainly no functionality to specify branches.

ELS 2024 63

Qlot, a project-local library installer ELS’24, May 6–7 2024, Vienna, Austria

6 CONCLUSION
We have seen the problems that Qlot is trying to solve, its design,
its usage, and how it differs from other tools.

Qlot has undergone significant refinement in response to user
feedback, addressing various issues and enhancing usability. Ini-
tially requiring Roswell[19], it has since switched to work directly
on SBCL, streamlining installation steps. Additionally, parallel exe-
cution has been introduced to greatly reduce runtime. The decision-
making process for adopting Qlot involved the entire team, priori-
tizing user experience and considering even minor inconveniences.

The basic REPL interface has been incorporated in version 1.5.0,
and users are encouraged to try it out and provide feedback.

REFERENCES
[1] Zach Beane. Quicklisp. https://www.quicklisp.org
[2] PyPI - The Python Package Index. https://pypi.org
[3] RubyGems. https://rubygems.org
[4] ASDF - Another System Definition Facility. https://asdf.common-lisp.dev
[5] Git Tools - Submodules. https://git-scm.com/book/en/v2/Git-Tools-Submodules

[6] Alexander Artemenko. Ultralisp - A fast-moving Common Lisp software distri-
bution. https://ultralisp.org

[7] Quickdocs. https://quickdocs.org
[8] Zach Beane. Quicklisp library bundles. https://www.quicklisp.org/beta/bundles.html
[9] Zach Beane. The Quicklisp local-projects mechanism.

http://blog.quicklisp.org/2018/01/the-quicklisp-local-projects-mechanism.html
[10] François-René Rideau and Robert P. Goldman. Evolving ASDF: More Cooperation,

Less Coordination. ILC ’10: Proceedings of the 2010 international conference on
Lisp. Pages 29–42. https://doi.org/10.1145/1869643.1869648

[11] ASDF - The package-inferred-system extension. https://asdf.common-
lisp.dev/asdf/The-package_002dinferred_002dsystem-extension.html

[12] Dexador - A fast HTTP client for Common Lisp.
https://github.com/fukamachi/dexador

[13] Arnold Noronha. Quick-Patch. https://github.com/tdrhq/quick-patch
[14] Eric Timmons. 2021. Common Lisp Project Manager. In Proceedings of the

14th European Lisp Symposium (ELS’21). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.5281/zenodo.471646

[15] Eric Timmons. Common Lisp Project Index. https://gitlab.common-
lisp.net/clpm/clpi

[16] virtualenv - Virtual Python Environment builder. https://virtualenv.pypa.io
[17] Anthony Green. An OCI-based ASDF system distribution and management tool

for Common Lisp. https://github.com/ocicl/ocicl
[18] OCI - Open Container Initiative. https://opencontainers.org
[19] Roswell - Common Lisp environment setup Utility.

https://github.com/roswell/roswell

ELS 2024 64

Murmel & JMurmel
Robert Mayer

Research Industrial Systems Engineering (RISE)
Vienna, Austria

Thomas Östreicher
Research Industrial Systems Engineering (RISE)

Vienna, Austria

ABSTRACT
In this paper we will introduce Murmel, a Lisp dialect based on a
subset of Common Lisp, and JMurmel, a Murmel implementation.
JMurmel can be used as a standalone command line program as
well as embedded in a Java application or Webpage.

CCS CONCEPTS
• Software and its engineering→ General programming lan-
guages.

KEYWORDS
Lisp interpreter, Lisp compiler, JVM, embeddable
ACM Reference Format:
Robert Mayer and Thomas Östreicher. 2024. Murmel & JMurmel. In Proceed-
ings of the 17th European Lisp Symposium (ELS’24). ACM, New York, NY,
USA, 4 pages. https://doi.org/10.5281/zenodo.10997870

1 INTRODUCTION
JMurmel [3] started in part out of boredom during the Corona pan-
demic, and in part out of a desire to discover the “essence of Lisp”,
i.e. what is minimally needed to write Lisp programs. Implemen-
tation of JMurmel started 2020-ish as a 200 line program that was
able to run simple Lisp forms. Now in 2024 JMurmel has grown to
approximately 13000 lines of Java and 3200 lines of Murmel (and
an additional 3000+ lines of tests written in Murmel that mostly
run on CL-implementations as well).

While JMurmel at this time is a hobby project and not an indus-
trial strength Lisp it still can be used for various things, not the least
for experiments. If there is a need for an in-application scripting
language, then JMurmel may be a better choice than rolling your
own.

The name “Murmel” is a pun based on theGermanwords “Murmel/
murmeln” – “murmeln” translated to English is “mumble”. Also
“Murmel” is the name of a small but pretty badass animal that lives
high up in the Alps.

2 JMURMEL FEATURES
JMurmel features an interpreter and a compiler, a REPL with a trace
facility (trace and untrace function calls), full tail call support
(JMurmel’s interpreter processes all tailcalls with a loop inside eval,
JMurmel’s compiler transforms tailrecursive self-calls into loops,
other tailcalls are invoked through a trampoline), lexical closures,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.10997870

multiple return values, conditions, a macro facility, backquote ex-
pansion including nested backquotes, JSR223 support, support for
JFR (Java Flight Recorder)/ JMC (Java Mission Control), turtle- and
bitmap-graphics and garbage collection c/o JVM.

JMurmel implements Murmel’s datatypes (including conditions)
mostly one-to-one as Java datatypes, enabling easy embedding.
JMurmel itself is written in very simple Java, and can also be run
inside aWebbrowser using CheerPJ [1]; see e.g. the “Murmel Online
Repl” [4].

For experimentation purposes JMurmel provides command line
flags1 to disable certain language features such as lexical closures,
Java-FFI, some special forms, and so on. E.g. when invoked with
java -jar jmurmel.jar --XX-dyn --min+ --XX-oldlambda

then JMurmel behaves quite similar to the original Lisp from
1958.

3 COMPARISON MURMEL VS. COMMON LISP
Murmel is inspired by Common Lisp. That said, Murmel is some-
what close to but not really a “subset of Common Lisp as specified
by ANSI [5]”.

Major differences include:
• Murmel is a Lisp-1
• special variables work differently: Murmel doesn’t have dy-
namic (special) variables but dynamic bindings via (let
dynamic (. . . . CL’s defparameter or defvar create spe-
cial variables, re-binding them will be dynamic; Murmel’s
define creates global variables that by default will be shad-
owed by local variables or parameters unless rebound using
(let dynamic (. . .
• vararg lambda lists are specified as a dotted list (CL has
&rest and &body)
• the reader macro #! is used in addition to #| for multi-line
comments, making hash-bang shellscript work right out of
the box
• Murmel does not have a package system (yet), i.e. there are
no defpackage or in-package forms
• the default library is not automatically available, i.e. pro-
grams need to (require "mlib") to use library functions.
A “core” language is provided by the executable Jarfile, a
“default library” is provided and can be require’d, or replaced
by another library.
• Murmel supports fewer functions out of the box compared to
Common Lisp: running the REPL command :env in JMurmel
will list 182 symbols, and after loading the default library
:env will list a total of 293 symbols as well as 67 macros
which can be listed using the REPL command :macros
• Murmel does not support CLOS
• floating point by default is double-float

1These commandline flags currently only apply to the interpreter.

ELS 2024 65

ELS’24, May 6–7 2024, Vienna, Austria Robert Mayer and Thomas Östreicher

• math functions such as + return a double-float regardless
of their arguments
• the numeric tower is tiny: no bignum, ratio, complex, Murmel
only has fixnum and double-float
• REPL variables are prefixed by @, e.g. @*
• format’s syntax currently is different, e.g. Murmel: %s vs.
CL: ∼A
• load and require are performed at compile time
• some functions have different parameters because Murmel
doesn’t have keyword arguments

Extensions:

• letrec: similar to Scheme’s letrec
• named let, let*, letrec: similar to Scheme’s loop con-
struct, e.g.

(let loop ((n 0))
(print n)
(when (< n 3) (loop (1+ n))))

• hash-tables: Murmel’s make-hash-table accepts additional
values for the parameter key. Common Lisp supports eq,
eql, equal and equalp, Murmel adds t, compare-eql and
compare-equal. t indicates that keys are to be compared us-
ing their natural equality2, compare-eql and compare-equal
indicate that hash table iteration will be ordered by key.
Murmel’s surface representation also includes hashtable lit-
erals using the #H(. . . reader macro.
• Murmel’s default library contains some support for lazy
sequences using the concept of “generators” which are some-
what similar to Java’s iterators or Scheme’s SRFI-158.

See the file “Murmel-vs-CL.md” in the Github repo [2] for more
details.

4 COMPARISONWITH OTHER LISPS
This section highlights some selected differences between Murmel/
JMurmel and other Lisp dialects/ Common Lisp implementations.

The subsections “Murmel vs. Clojure” and “Murmel vs. Scheme”
address language differences between Murmel and Clojure and
Scheme respectively, while the subsections “JMurmel vs. ABCL”,
“JMurmel vs ECL” and “JMurmel vs. SBCL” address implementation
differences.

4.1 Murmel vs. Clojure
Clojure is an opinionated Lisp with some syntactic differences
compared to more traditional Lisps such as using [vs. (in some
places, different names for special forms, immutable data types and
more, while Murmel tries to stay closer to (a subset of) Common
Lisp. Clojure’s syntactic changes may make writing code more
convenient while Murmel’s more traditional syntax may make
writing code walkers more straightforward.

2Actually this is the platform leaking through: “natural equality” really is Java’s equal
method

Unlike Clojure’s JVM integration, Murmel’s optional3 JVM in-
tegration is not at the syntactic level, instead there are the two
(optional) functions jmethod and jproxy to invoke Java code from
Murmel and vice versa. Clojure’s approach makes using Java li-
braries easier; all classes on the JVM’s classpath can be used from
Clojure code using Clojure syntax; in Murmel one would probable
write wrapper functions or macros using jmethod and/ or jproxy
(which may turn out to be too cumbersome for large scale use).

Common Lisp code samples from books or from the internet
often are valid Murmel as is or can be ported to Murmel with only
few changes; porting Common Lisp to Clojure might take more
effort.

4.2 Murmel vs. Scheme
While Murmel and Scheme share some similarities such as the
shared namespace for variables and functions there are differences
as well:

Several special forms and primitive functions differ in their
names, e.g. set-cdr! (Scheme) vs. rplacd (Murmel).

Scheme has continuations, Murmel does not. Murmel has non-
local returns using catch/ throw, Scheme does not support these
special forms out of the box, however non-local returns (and more)
can be implemented using Scheme’s more powerful continuations.

Murmel has Common-Lisp-style multiple return values, Scheme
only added a limited form of multiple return values in more recent
revisions, and Scheme implementations have subtle differences in
their support for multiple return values, e.g. whether or not map
accepts a function that returns more than a single value.

Murmel has Common-Lisp-style macros, Scheme has hygienic
macros (and some Scheme implementations have non-hygienic
macros as well).

4.3 JMurmel vs. ABCL
ABCL is a conforming Common Lisp implementation, JMurmel is
not.

Running a “Hello, World!” program from the command line takes
approximately 300ms with JMurmel (or approx. 400ms for loading
Murmel’s default library followed by “Hello, World!”) while ABCL
can take a second or two.

ABCL comes as an approx. 10MB Jar-file while Murmel currently
is 1/20th the size at approx. 560 kB (450 kB Jarfile + 113 kB library
in source form). A significant part of the size difference probably is
due to ABCL’s richer standard library and the different compilation
strategy.

JMurmel’s smaller feature set that can easily reduced even more
may be an advantage for embedding in another application, e.g.
in an application for users with less programming skills where
less features means less training required, or in a multi-user server
application where each user gets their own sandboxed Lisp.

ABCL directly compiles Lisp to JVM bytecode, JMurmel tran-
spiles Lisp to Java and then uses the JVM’s builtin Java compiler to
generate classfiles.
3jmethod and jproxy are not a required part of Murmel. The Murmel language refer-
ence lists these two function in a separate chapter as “JMurmel specific extensions”.
JMurmel allows to disable jmethod and jproxy via a commandline switch when used
as a standalone application, and programmatically when used as a library embedded
in a Java program.

ELS 2024 66

Murmel & JMurmel ELS’24, May 6–7 2024, Vienna, Austria

ABCL uses it’s own datatypes, e.g. 1 would be internally rep-
resented as an object of class org.armedbear.lisp.LispInteger
while JMurmel uses standard Java datatypes where possible, e.g. 1
is represented as an object of class java.lang.Long.

4.4 JMurmel vs. ECL
ECL is a conforming Common Lisp implementation, Murmel is not.

Execution speed of compiled ECL and JMurmel programs are
roughly comparable.

ECL can produce standalone executables by transpiling Lisp to C
and then compiling and linking the final program using the platform
tools. JMurmel as well as Jarfiles created by JMurmel need a JVM
runtime, using an ahead-of-time compiler such as GraalVM-native
as an extra step it would be possible to create single-file-executables
with JMurmel, though.

4.5 JMurmel vs. SBCL
SBCL is a conforming Common Lisp implementation, JMurmel is
not.

SBCL runs unoptimized Common Lisp code 5 times (2-10x) faster
than compiled JMurmel (after the usual JVM warmup). With SBCL
most simple actions such as compiling and running a “fizzbuzz”
program are instantenuous, while doing the same with JMurmel
produces a noticeable delay. However, extremely GC-heavy pro-
grams such as the GC benchmark “gc-latency-experiment” will put
SBCL at a disadvantage as JMurmel uses the JVM’s set of highly
optimized garbage collectors (the same would be true for ABCL,
though).

5 FIELDS OF APPLICATION
Main fields of application of JMurmel probably will be where an
industrial strength Lisp such as ABCL, ECL or SBCL is not supported
(e.g. in a browser) or the full feature set of a Common Lisp is not
required and may even be a disadvantage, e.g. when used as a
scripting language embedded in another application JMurmel’s
configurability makes it possible to tailor the feature set to the
actual needs of the application.

With the caveat that Murmel/ JMurmel are a hobby project and
work in progress possible fields of application of JMurmel include:
• experimenting, teaching: JMurmel’s feature set can be stripped
down to pure Lambda calculus so even cons-cells/ car/ cdr
can be re-implemented in Lambda calculus using JMurmel.
JMurmel’s support for turtle graphics may make examples
more fun.
• Web-applications: using CheerpJ anOnline REPL that doesn’t
need a supporting backend service was implemented with
approx. 20 lines of Javascript code. Calling Javascript from
Murmel and thereby changing the DOM was not tested yet
but should be possible as well.
• Online-publications: JMurmel+CheerpJ [1] could be used to
include runnable (and editable) Lisp samples in a Webpage
• embedded scripting languages for Java applications; if de-
sired then sandboxing a JMurmel runtime should be fairly
straightforward as e.g. JFFI can be disabled using a feature
flag passed when creating an instance of JMurmel. Callbacks
from Murmel into the host application still are possible even

with JFFI disabled by inserting selected host functions in
JMurmel’s environment allowing for a high level of control
of what a script can or cannot do.
• simple “hashbang-scripts”
• standalone applications: JMurmel’s JFFI provides access to
Java’s large ecosystem of libraries

6 BENCHMARKS
The JMurmel github repo [2] contains a benchmark which consists
of 15 programs mostly from [6] and is written in mostly unop-
timized Common Lisp. Unfortunately this precludes comparing
JMurmel with Clojure or Scheme implementations as porting the
programs to Clojure or Scheme was not done. Instead JMurmel
was compared to Common Lisp implementations with different
runtime strategies: ABCL uses the JVM as does JMurmel, ECL uses
a C-compiler as a backend, SBCL has a native compiler.

This benchmark can be run by loading the toplevel source file
“samples.murmel-mlib/benchmark/all.lisp”. Running the program
produces the following results for JMurmel 1.4.6, SBCL 2.3.4, ABCL
1.9.1 and ECL (relative to SBCL 2.3.4):

Figure 1: Performance Comparison

SBCL 1
JMurmel interpreted 62
JMurmel compiled 4.2
ABCL interpreted 148
ABCL compiled 11.8
ECL 23.9.9 interpreted 52
ECL 20.4.24 compiled 6

The numbers above should be interpreted as x times slower than
SBCL.

The benchmarks were run on a Windows 10 Laptop with 32 GB
RAM, an i5-1135G7@2.40GHz, and Turbo mode was disabled. The
JVM was Temurin build 1.8.0_372-b07, JVM options were

-XX:+UseParallelGC -Xmx1G.

ECL was run under Windows/WSL/Debian-11.8, the other Lisp
systems were run directly under Windows.

6.1 Interpretation of the results
In interpreter mode JMurmel is comparable to ABCL, in compiler
mode JMurmel is comparable to ECL, at least according to JMurmel’s

ELS 2024 67

ELS’24, May 6–7 2024, Vienna, Austria Robert Mayer and Thomas Östreicher

benchmark suite that is based on the benchmarks in “Performance
and Evaluation of Lisp Systems” [6].

SBCL is significantly faster than the other implementations in-
cluding JMurmel. It is estimated that SBCL’s type derivation plays
a significant role in this.

The final numbers should not be taken too seriously and at best
give a coarse overview. JMurmel being a lot less mature that the
competitors may have bugs such missing checks hat may give
JMurmel an unfair advantage. Things like Garbage Collector set-
tings, JDK versions etc. can have a rather big impact. Also the code
for the benchmark harness is only a simple loop using time for
measurement.

7 LESSONS LEARNED
A “hosted Lisp” as opposed to “implementing a Lisp in Lisp” has
both advantages and disadvantages.

Especially on the JVM one gets a lot of things “for free”, most
notably a world class garbage collector, but also things like lexical
closures are trivial to implement using the host’s lambda language
feature. The JVM provides memory safety to a very high level, and
a Lisp running on the JVM will have good memory safety with little
or no additional effort. Last but not least porting to other platforms
becomes a non-issue, JMurmel runs on all platforms that support
one of the Java 8 through 22.

Disadvantages include (usually) no control over the develop-
ment of the host platform, limitations such as the need for tailcall-
trampolines if the host does not support native tailcalls.

The Common Lisp specification leaves a considerable amount of
freedom to implementers, and the authors of the CL specification
seemed to have considerable foresight e.g. in specifying the Condi-
tion system in a way that CLOS is not a requirement but conditions
can be implemented using platform facilities without CLOS.

Implementing a “Library” separate from the “core language”
makes it easier to end up with a well-defined language that doesn’t
expose any implementation internals as is sometimes the case with
Lisps that are implemented in Lisp, especially if there is no package
system that allows to hide internals.

8 NEXT STEPS
Continuing development of Murmel/ JMurmel will likely address
the following features:

8.1 Language:
• format
• macrolet (already implemented in not-yet-released JMurmel
1.4.7)
• support for setf-functions
• eval-when
• defstruct
• a package system
• probably case sensitive symbols
• a better numeric tower, at least bignums/ BigIntegers

8.2 Runtime:
• a debugger/ stepper

• support for larger programs – currently JMurmel translates
Lisp into one named Java class + lots of anonymous Java
classes. Global symbols and literals are currently emitted as
members of this single named class, and the JVM limits the
number of entries a Java class can have.
• support for using the JVM’s Thread support, maybe add (cas
place) functions similar to what SBCL supports
• (declaim (optimize (inline. . .
• some type support at compile time
• maybe a new “sea of nodes” based optimizing compiler
• maybe an implementation of Murmel with larger parts writ-
ten in Murmel and a smaller runtime in e.g. C (or C#, or Go),
or maybe an implementation of Murmel on top of SBCL.

ACKNOWLEDGMENTS
Thanks to Thomas Östreicher for help in preparing this paper and
many fruitful discussions.

REFERENCES
[1] Cheerpj. URL https://labs.leaningtech.com/cheerpj3.
[2] Jmurmel github repo. URL https://github.com/mayerrobert/jmurmel.
[3] Jmurmel landing page. URL https://jmurmel.github.io.
[4] Murmel online repl. URL https://jmurmel.github.io/repl.
[5] Kent Pitman et al. Common lisp hyperspec, 1996. URL http://www.ai.mit.edu/

projects/iiip/doc/CommonLISP/HyperSpec/FrontMatter/.
[6] Richard P. Gabriel. Performance and evaluation of LISP systems. Massachusetts

Institute of Technology, USA, 1985. ISBN 0262070936.

ELS 2024 68

	Preface
	Message from the Program Chair
	Message from the Local Chair

	Organization
	Symposium Organizer
	Programme Chair
	Local Chair
	Virtualization Team
	Programme Committee

	Sponsors
	Program overview
	Invited Contributions
	Bias is a bug; but not as we know it! – Julian Padget
	Is the hype cycle real? – Stavros Macrakis
	The Need for Symbolic AI Programming Languages in the Public Sector – Markus Triska

	Monday, 24 April 2023
	The Medley Interlisp Revival – Andrew Sengul
	Lisp Query Notation – A DSL for Data Processing – Anders Hoff
	Grants4Companies: The Common Lisp PoC – Philipp Marek, Bjoern Lellmann, Markus Triska
	An Introduction to Array Programming in Petalisp – Marco Heisig
	Adaptive Hashing – Gábor Melis

	Tuesday, 25 April 2023
	Period Information Extraction: A DSL Solution to a Domain Problem – Arthur Evensen
	The Quickref Cohort – Didier Verna
	py4cl2-cffi: Using CPython’s C API to Call Python Callables from Common Lisp – Shubhamkar Ayare
	Qlot, a Project-Local Library Installer – Eitaro Fukamachi
	Murmel and JMurmel – Robert Mayer, Thomas Östreicher

