The Nanopass Framework as a
Nanopass Compiler

Andy Keep

Background

Background

The Nanopass Framework is an embedded
domain-specific language for creating compilers
that focuses on creating single purpose passes
and precise Iintermediate representations. The
DSL aims to minimize boilerplate and the resulting
compilers are easier to understand and maintain.

Background

» Two language forms: define-language and define-pass

« define-language specifies the grammar of an intermediate language
* A language can extend an existing language

« define-pass specifies a pass operating over an input to produce an output
* A pass can operate over two languages, which might be the same;
* Only an input language or output language; or

* Even over non-language inputs and outputs

Example

define-language L1
terminals
symbol (X
datum (d
primitive (pr
Expr (e body
X
pr
quote d
1T ed el
1T ed el e2
begin ex ... e
let (Ix*k ex| ...) bodyx ... body
letrec (Ix*x ex| ...) bodyx ... body
lambda (x* ...) bodyx ... body
€ X ...

Example

define-language L2
extends L1
Expr (e body
— (1T e@ el
let Xk ex
letrec Xk ex
lambda (x*x ...
+ (letrec Xk ex

lambda (xx ...

bodyx ...

body

...) bodyx ...
body* ...

body

body

body

body

Example

define—pass simplify L1 (1r L2
EXpr Expr (e EXpr

1t |, [ed el 1f ,e0 ,el (void

lambda (,x* ... body*x| ... body
lambda (,x* ... begin ,bodyx ... ,body

letrec Xk , |ex . e bodyx| ... body
letrec Xk 8% uun begin ,bodyx ... ,body

let Xk , |ex . e body*x| ... body

Llambda (,Xx* ... begin ,body* ... ,body €X ..

Evolution

- define-language

language->s—-expression
diff-languages
prune-language
define-language-node-counter
define-parser
define-unparser

etc.

« define-pass

- with-output-language

nanopass-case
echo-define-pass
trace-define-pass
pass-input-parser
pass-output—-unparser

etc.

What do | want?

* A language for nanopass languages

» Many extensions naturally flow from this: language->s—expression,
diff-languages, prune-lLanguage, define-parser, and
define-language-node-counter

* A language for nanopass passes
» Extensions like echo-define-pass could be improved

* Why not write even more of the nanopass framework using this”?

An API for languages

The language of languages

» define-language already provides a syntax, why not just use it?

 Grammar is messy
| anguage clauses are unordered

* Pretty syntax for unparsers can use non-s-expression syntax
(call e ex ...) => (e ex ...)

 |Language extensions are part of the grammar

 Meta-variables need to be mapped to terminal and nonterminal clauses

Aside: nanopass internals

Aside: current internal structure

 Languages are represented as a collection of records:
 Language - describes fixed parts and contains terminals and nonterminals
 tspec - describes a terminal: predicate, meta-vars, etc.
 ntspec - describes a nonterminal: predicates, meta-vars, productions, etc.
e alt - describes a production: syntax, etc. with three derived records:
« palr-alt - pattern production: pattern, fields, etc.

« terminal-alt - bare terminal production

 nonterminal-alt - bare nonterminal production (essentially a subterminal)

Aside: current internal structure

* |Language description records contain source syntax and internal information
* Description can be used to generate record definitions, constructors, etc.
» The internal information is not needed for language->s—-expression, etc.
* Perhaps our language API should provide both views:

* A language for describing something closer to the source structure

* An annotated language for describing the internal details

Aside: patterns

» Patterns are composed of the following forms:
 1d - a bare identifier, always a reference to a terminal or nonterminal
» (maybe 1d) - represents an optional field, will have a value or #f
e () - matches null
e (X . y) - matches a pair of patterns: X and y
 (x dots) - matches a list of pattern x (dots is the syntax .. .)

e (X dots y Z) - matches a list of X, followed by zero or more
patterns y, terminated by a final pattern z

Aside: patterns

 Patterns are composed g#the follo

» 1d - a bare identj§#€r, alway. oference t #lterminal or nonterminal

y

Yy’

optiong |eld, will have a value or #fT

/ /

* (maybe i;//

- represe Qn
* ()

- prdtches null ¢ ¥
e (X . V)& €hes a paj

/ ,

/f patterns: x and y

e (X dotsy y #. . Z) - matches a list of x, followed by zero or more
patterns -4 rmlnated by a final pattern z

Aside: patterns

» Patterns are composed of the following forms:

» 1d - a bare identifier, always a reference to a terminal or nonterminal

» (ma
e ()- (x dots) isreallythesameas (x dots y z)
. (X where (y ...) iszerolengthand z is null

e (X dots y Z) - matches a list of X, followed by zero or more
patterns y, terminated by a final pattern z

Aside: patterns

» Patterns are composed of the following forms:
 1d - a bare identifier, always a reference to a terminal or nonterminal
» (maybe 1d) - represents an optional field, will have a value or #f
e () - matches null
e (X . y) - matches a pair of patterns: X and y

e (X dots y Z) - matches a list of X, followed by zero or more
patterns y, terminated by a final pattern z

g . ." ,\
X eosg
! SR 8
& .
j " s N

;'*‘i,.

(S G .2
v, . o
P
¢ A ‘

» 1d - a bare identi

/
/4
g 4
4)
s'*‘,

. Y 4 .
 (maybe 10 ptiong#frield, will have a value or #f
// e /

e () - mdtches null

o (- V) - pa O patterns: x and y
e (x . &0 // - matches a list of X, followed by zero or more

patternyy, termipdted by a final pattern z

. Y4
N\ /

Aside: patterns

» Patterns are composed of the following forms:

» 1d - a bare identifier, always a reference to a terminal or nonterminal

* (ma

. () - (x dots y z)isx dots followed by an improper
list, but we can represent an improper list with (x . Yy),

e (X so we really just need (x dots . y)

patterns y, terminated by a final pattern z

Aside: patterns

» Patterns are composed of the following forms:
 1d - a bare identifier, always a reference to a terminal or nonterminal
» (maybe 1d) - represents an optional field, will have a value or #f
e () - matches null
e (X . y) - matches a pair of patterns: X and y

« (x dots . y) - matches a list of pattern x followed by a patterny
where dots is the syntax ...

Language API

The simple language

define—language Llanguage
terminals
identifier (1d
datum (handler
box (b
dots (dots
null (null
Defn (def

define-language 1d clx ...

Clause (cl
entry ref)
terminals termx ...
nongenerative-id 1d

1d (1d* ...) b prodx ...

Terminal (term
simp le—-term
=> simple-term handler

SimpleTerminal (simple-term

id (1d*x ...) b
Production (prod
pattern

=> pattern@ patternl

—> pattern handler
Pattern (pattern

1d

null

ref

maybe ref

patternd patternl

pattern® dots patternl
Reference (ref

term-ref 1d0 1d1l b

nt—-ref 1d0@ 1dl b

The simple language

define—language Llanguage

terminals SimpleTerminal (simple—-term
identifier (1d id (1dx ...) b
datum (handler Production (prod
box (b pattern
dots (dots ttern@ patternl
null (null terminals ttern handler
Defn (def ldentifier [1d pattern
define-language 1d datum (handler
Clause (cl box (b
entry ref) dots (dots
terminals termx .. null (null ref
nongenerative-id 1 rnd patternl
id (1d* ...) b prodx ... pattern® dots patternl
Terminal (term Reference (ref

simp le—-term
=> simple-term handler

term-ref 1d® 1dl1l b
nt—-ref 1d0@ 1d1l b

The simple language

define—language Llanguage

terminals
identifier (1d
datum (handler
box (b
dots (dots
null (null

Defn (def
define-1langu

Clause (cl

SimpleTerminal (simple-term

1d (1d*% ...) Db
Production (prod
pattern
=> pattern@ patternl
> ~~++~e= handler
Lern

Defn (def
define-language 1d clx ...

ent 'y ref) T —————\

terminals termx ... maybe ref,
nongenerative-id 1d patternd patternl

id (1d* ...) b prodx ... pattern® dots patternl

Terminal (term
simp le—-term
=> simple-term

Reference (ref
term-ref 1d® 1dl1l b
handler nt—-ref 1d0@ 1d1l b

The simple language

define—language Llanguage

termin

identifier
m (handler

datu
boXx
dots
nul L
Defn

define-langua

Clause

als

b
dots
null

def

cl

entry ref)

terminals ter
nongenerative-
1d* ...
Terminal (term
simp le—-term
=> simple-term handler

1d

b prodx ...

SimpleTerminal
id (1d*x ...) b
Production (prod
pattern
10 patternl
Clause (cl 1 handler
entry ref) ttern

terminals termx ...
nongenerative-id 1id
1d (1dx ...

b prodx ...

id 1d" — patterno patternl

pattern@® dots
Reference

ref

term-ref 1d® 1dl1l b

nt—-ref 1d0@ 1d1l b

simp le—-term

patternl

The simple language

define—language Llanguage

terminals SimpleTerminal
identifier (1d 1id (1d*x ...) b
datum (handler Production (prod
box (b pattern
dots (dots 10 patternl
null (null Terminal (term 1 handler
Defn (def simp le—-term L tern
define-langua => simple—term handler
Clause (cl SimpleTerminal (simple-term
entry ref) id (id* ... b
terminals ter P
nongenerative—id 1id, Tpatterno . patterni

1d (1d*x ...
Terminal (term

simp le—-term
=> simple-term handler

b prodx ...

pattern@® dots
Reference

ref

term-ref 1d® 1dl1l b
nt—-ref 1d0@ 1d1l b

simp le—-term

patternl

The simple language

define-language Li'=~7~v272
terminals

identifier (1

datum (handle

lal (simple-term
.) Db
{prod

Production (prod
pattern
=> pattern@ patternl

box (Db
—> pattern handler
dots (dots Pattern (pattern 10 patternl
null (null id 1 handler
Defn (def ull [tern
define-langua o f
Clause (cl naybe ref
igﬁgingiz)ter patterno patternl |
nongenerative patternd dots patternl patternl
1d (1d% ReTerence ref . 5ots patternl
Terminal (term term-re? 1d@ idl © ref
. nt—ref 1d0@ 1dl b . .
simp le—term 1do 1d1 b

=> Simple—ter...-———wﬂ 1d1l b

The simple language

define—language Llanguage
terminals
identifier (1d
datum (handler
box (b
dots (dots
null (null
Defn (def

define-language 1d clx ...

Clause (cl
entry ref)
terminals termx ...
nongenerative-id 1d

1d (1d* ...) b prodx ...

Terminal (term
simp le—-term
=> simple-term handler

SimpleTerminal (simple-term

id (1d*x ...) b
Production (prod
pattern

=> pattern@ patternl

—> pattern handler
Pattern (pattern

1d

null

ref

maybe ref

patternd patternl

pattern® dots patternl
Reference (ref

term-ref 1d0 1d1l b

nt—-ref 1d0@ 1dl b

The annotated language

define-language Lannotated
terminals
record—-constructor—-descriptor (rcd
record-type—-descriptor (rtd
exact-integer (tag level tag—mask
datum (handler pred all-pred all-term-pred accessor maker

box (Db
3g$2tl£;ig H PrettyProduction (pretty-prod
null (null procedure handler
Defn (def pretty pattern
define-language id ref (maybe id@ Field (field
rtd rcd tag-mask ref level accessor
termsx optional ref level accessor
ntx ') Pattern (pattern
Terminal (term ;dll
id (1d*x ...) b (maybe handler) pred uf
Nonterminal (nt rﬁaybe ot
lgroéi* .«.) b rtd rcd tag pred all-pred all-term-pred batternd . patternl
Productioﬁl. rod pattern® dots patternl
VP Reference (ref
production pattern (maybe pretty-prod) rtd tag pred maker . .
fieldx ... term—ref 1dQ 1d1 b
terminal ref (maybe pretty-prod nt-ref 1d@ 1d1 b

nonterminal ref (maybe pretty-prod

The annotated language

define-language Lannotated
terminals

record—constructor—-descriptor (rcd

record-type—-descriptor (rtd
exact—intener (taa level tan—mAack

terminals
record—-constructor-descriptor (rcd
record-type—-descriptor | rtd
exact-integer (tag level tag—-mask
datum (handler pred all-pred all-term—pred accessor maker

box (b
1 identifier (1d
\ dots (dots
null ‘null
S j Reference (ref)
p;igggil??.pattern maybe pretty-prod) rtd tag pred maker term—ref idQ id1 b
terminal ref (maybe pretty-prod nt-ref 1d@ 1idl b

nonterminal ref (maybe pretty-prod

4 4

The annotated language

define-language Lannotated
terminals
record—-constructor—-descriptor (rcd
record-type—-descriptor (rtd
exact-integer (tag level tag—mask
datum (handler pred all-pred all-term-pred accessor maker

box (b

identifier (1id _ ,

dots (dots :E;ggleEFEtty_pFOd
et pefn (def

define-language : define-Llanguage id ref (maybe 1d0 Iz):lccessor

r:Ed red tag-mas rtd rcd tag-mask 'ef level accessor

erm« ... |

AP termx ... ‘tern

Terminal (term nNtx ...

id (1d*x ...) b (r
Nonterminal (nt

lgroéi* ...) b rtd rcd tag pred all-pred all-term-pred batternd . patternl
Productioﬁl. rod pattern® dots patternl
VP Reference (ref
production pattern (maybe pretty-prod) rtd tag pred maker . .
fieldx ... term—ref 1dQ id1l b
terminal ref (maybe pretty-prod nt-ret 1d0@ 1dl b

nonterminal ref (maybe pretty-prod

The annotated language

define-language Lannotated
terminals
record—-constructor—-descriptor (rcd
record-type—-descriptor (rtd
exact-integer (tag level tag—mask
datum (handler pred all-pred all-term-pred accessor maker

box (b
égigtlg;ig e PrettyProduction (pretty-prod
null (null procedure h?ndler

Defn (def 2rn

define-language Terminal (term

rtd rcd tag-me . : cCessor
termk ... id (1d* ... b ‘maybe handler) pred f level accessor
ntx ... 2rn
Terminal (term Y —
id (1d*x ...) b (maybe handler) pred ruf
Nonterminal (nt ﬁaybe ref
lgroéi* ...) b rtd rcd tag pred all-pred all-term—pred batternd . patternl
Productioﬁl.prod pattern@ dots patternl
production pattern (maybe pretty-prod) rtd tag pred maker ReTerence rEf .
fieldx ... term—ref 1dQ id1l b
terminal ref (maybe pretty-prod nt-ref 1d@ 1d1 b

nonterminal ref (maybe pretty-prod

The annotated language

define-language Lannotated
terminals
record—-constructor—-descriptor (rcd
record-type—-descriptor (rtd
exact-integer (tag level tag—mask
datum (handler pred all-pred all-term-pred accessor maker

box (b
égigtlgéig = PrettvProduction1 pretty—prod
null (null _)er
Defn (def Nonterminal (nt '

define—tangy id (id* ... b o

rtd rcd tag

termk ... rtd rcd tag pred all-pred all-term-pred §Vel accessor
ntx ... prodx ...

Terminal (term
1d (1d*x ...

. "ﬁ"
Nonterminal (nt) naybe ref

lgroéi* ..., b rtd rcd tag pred all-pred all-term-pred batternd . patternl
Productioﬁl. rod pattern® dots patternl

VP Reference (ref

production pattern (maybe pretty-prod) rtd tag pred maker . .

fieldx ... term—ref 1dQ 1d1 b

terminal ref (maybe pretty-prod nt-ref 1d@ 1d1 b

nonterminal ref (maybe pretty-prod

The annotated language

define-language Lannotated
terminals
record—-constriictor—doccrintar (red
record-type-d

exact—-integer :
Satum (handil Production (prod

box (b production pattern ‘maybe pretty-prod
S g e e
Defn (def terminal ref (maybe pretty-prod r
df{é”ﬁ;éart‘g;f; nonterminal ref (maybe pretty-prod .
terms ... PrettyProduction (pretty-prod level accessor
ntx ... procedure handler &

Terminal (term

pretty pattern

id (id* ...) . .
Nonterminal (nt Field field
1gr032* ven) | ref level accessor tternd
Production (pro optional ref level accessor patternl
prqduction pa id1 b
fieldx ... ﬂdl b

terminal ref (maybe pretty-prod
nonterminal ref (maybe pretty-prod

The annotated language

define-language Lannotated
terminals
record—constructor—-descriptor (rcd
record-type—-descriptor (rtd
exact-integer (tag lev
datum (handler pred al

box (b Pattern (pattern
identifier (id 1d
dots (dots
null (null null
Defn (def ref
define—language 1d ref
rtd rcd tag—mask maybe ret
termx ... patterno patternl
Ntk ... pattern@ dots . patternl

Terminal (term Reference | ref

id (1d* ...) b (maybe . _
Nonterminal (nt term—ref 1d0@® 1d1l b
prodx ...

Production (prod

production pattern (maybe pretty-pro
fieldx ...

terminal ref (maybe pretty-prod
nonterminal ref (maybe pretty-prod

rtd Tag pred maker

Production (pretty-prod
edure handler

ty pattern

(field

level accessor

onal ref level accessor
n (pattern

e ref

erno patternl

ern® dots patternl
nce (ref

term-ref 1d@ 1dl1l b
nt—-ref 1d0® i1dl b

Using the Language API

The language experiment

« Two libraries (nanopass experimental) and (nanopass exp-syntax)
« (nanopass experimental) contains languages and passes
 Lookup-language retrieves language forms from syntactic environment
« language-1information-language returns Llanguage
- Llanguage-information—-annotated-language returns Lannotated
 (nanopass exp-syntax) contains new syntactic forms

- define-language-exp, language->s—-expression—-exp,
prune-language-exp, diff-languages-exp, etc.

The language experiment

define-syntax define-language—exp

lambda (X
lambda (rho
syntax—case X

rest
Lletx lang (parse—-np-source x 'define—language—exp
lang (handle-language—extension
lang 'define-language—exp rho
lang (check-and-finish-language Llang
lang—annotated (annotate-language lang
nanopass—case (Llanguage Defn) lang
define-language ,1d ,clx ...
begin
define-language rest
define—-property 1d experimental-language
make—-language—-information Llang lang—annotated
define-language—-records 1d

The language experiment

How has it turned out?

 Rewrote all of the language extensions as passes over languages

* Often used annotated language to avoid unordered clauses

« Llanguage might be better with this structure.

* Patterns instead of syntax made some things a little more complicated
 Producing syntax is relatively easy with a couple caveats

« Sometimes need to use datum->syntax to "repaint" identifiers

 Might want to expand into a pass language with a helper to produce syntax

An API for passes

The language of passes

 Well... | didn't quite get to this yet.

The language of passes

 Well... | didn't quite get to this yet.

e SO0, instead lets talk about plans...

Future direction

Future direction

* Next step is to add a language of passes
* |mplementing the language is not too difficult
» Implementing define-pass—exp is a little more involved
* Need to implement meta-parser for matching and construction
 Need to implement bollerplate generation code as a pass

* Provides an opportunity to improve things

Future direction

* [he experimental language and pass are only a start
* They still rely on the original nanopass framework to work
 We need a way to partially evaluate these to produce a language core

* This is possibly the most challenge part

Wrapping up

Wrapping up

* [he language experiment seems promising
* The pass experiment seems relatively straightforward
* |'m hopeful the core can be generated from this source

* You can try it out (currently in Chez Scheme only):
https://github.com/nanopass/nanopass-framework-scheme/

Thanks!

https://github.com/nanopass/nanopass-framework-scheme/

Questions?

https://github.com/nanopass/nanopass-framework-scheme/

