LISP DEPLOYMENT

Kyle Kerslake
RavenPack

Our Problems

m Large applications

m Lots of required data

m Subtle variations of these applications
m Long startup times (data loading)

Build + Run from Source

m Syncing repositories is easy
m Git pull and reload to hotpatch (easy)

m Full process takes over 20 mins

Dump an image!

m Startup down to 2 minutes
m One file to rule them all

mFile is 7gb large (hard to move)
m Requires deployment targets to be set up
m Care needed for stored pathnames

Lisp images in Docker images

m Infrastructure can handle big images

m Deployment is almost as simple as source
m Base Lisp container means no Lisp setup

m Hotpatching is more awkward
m Additional tool to learn

Lisp in the middle of web browsing

Michael Raskin, raskin@mccme.ru

Dept. of CS, TU Munich

April 2, 2019

M. Raskin (TUM) Lisp in the middle of web browsing April 2, 2019 1/5

In the previous installments

Controlling everything with Lisp is great
Lisp machines were tools of saner times

Web and hardware are horrible
Previous years: how to control hardware drivers

This time: web in practice

M. Raskin (TUM) Lisp in the middle of web browsing April 2, 2019 2/5

Thoughtful theridion

Works on web
(as every theridion — cobweb spider — is expected to)

Wraps tools like CL-HTML5-Parser and Drakma and CSS-Selectors

Thinks before acting:
Redefinable policies for everything via CLOS

M. Raskin (TUM) Lisp in the middle of web browsing April 2, 2019 3/5

They took a web of documents and killed it!
Web of applications — but snapshots still work
Save everything before reading!

Javascript and styles are not really needed most of the time
Designers ask for semantic markup?

Facebook requires metadata for good preview?

Let's use the results

Stop looking for updates by eyes — process article history automatically
using only human-oriented pages
(and download archives if desired)

M. Raskin (TUM) Lisp in the middle of web browsing April 2, 2019 4/5

Crawling DSL

(with-page (x "https://planet.lisp.org/")
"div#content > p > a"
("href" x)
(with-page (x x :recurse recurse)
(let prev "tr:first-child > td > a"
("href" x))
(page-walker-brancher-progn
(with-page (x x :fetch nil :keep-brancher t)
"1li > a"
("href" x)
(if (cl-ppcre:scan "/201[0-8]/" x)
page-walker-terminator x))
(recurse prev))))

M. Raskin (TUM) Lisp in the middle of web browsing April 2, 2019

Crawling DSL

(with-page (x "https://planet.lisp.org/")
"div#content > p > a"
("href" x)
(with-page (x x :recurse recurse)
(let prev "tr:first-child > td > a"
("href" x))
(page-walker-brancher-progn
(with-page (x x :fetch nil :keep-brancher t)
"1i > a"
("href" x)
(if (cl-ppcre:scan "/201[0-8]1/" x)
page-walker-terminator x))
(recurse prev))))

https://gitlab.common-lisp.net/mraskin /thoughtful-theridion

M. Raskin (TUM) Lisp in the middle of web browsing April 2, 2019

What's new with
Clasp & Cando?

Martin Cracauer <cracauer@thirdlaw.tech>
European Lisp Symposium 2019
Genoa, Italy

Clasp/Cando support organization

Christian Schafmeister and Martin Cracauer founded a company:

- ThirdLaw Technologies www.thirdlaw.tech n)ipdl_aw LLC
- With Temple University and DOE wGhnaIagies

- Paid support for open source Clasp and Cando

- Commercial modules (e.g. Free Energy Perturbation)

- Distributed computing framework to execute Cando output directories for
molecular dynamics package (e.g. Amber) on distributed computing fleets

- Emphasis on security

- Research to optimize cost and/or latency for those computing jobs

New youtube
demos!

www.thirdlaw.tech

Demo: free energy perturbation in Cando using cl-jupyter based notebooks to blend graphical
user interface and language based control and reusability.

Clasp infrastructure and accessibility progress

Progress in Clasp startup time

Lots of general Lisp correctness patches (thanks Karsten Poeck)

Progress in compile time (Clasp 30 min, Cando+quicklisp 40 min)

Progress in debug info

Buildbot ensures branches stay buildable. -ish

Officially supported: Linux w/LLVM6 (e.g. Debian Stretch w/backports, Ubuntu
18.04), OSX/brew, OSX/macports, FreeBSD port

Contiguous update of Docker image: "docker run ... cracauer/cando

Linux users can also use the Docker image to extract the binary /opt/clasp or use
it as a chroot instead of Docker.

Clasp, Cando and cl-Jupyter

- Jupyter notebooks are the official GUI for Cando

- Our hacked up cl-jupyter is on github/clasp-developers

- Our buildbot builds the whole stack of Clasp, Cando, cl-jupyter and all
quicklisp modules required by that, and puts it into Docker

- Can be used by anybody who just wants to use cl-jupyter, not specific to
Cando

- Anyone wants to backport it to general Cl/quicklisp? Right now a bit
Clasp-specific

Docker image can be used to unpack /opt/clasp, which has it all.

Open source used in Clasp/Cando

Clasp doesn’t go on crusades to reinvent wheels. Partial list:

- SICL

- LLVM (all code generation goes through LLVM optimization)

- Boehm GC and MPS (open-source-ish)

- CL-jupyter and various graphics packages for web from quicklisp
- Alexandria

- Closer-mop

- Concrete syntax tree

Distributed computing for molecular dynamics

- Not specific to molecular dynamic, can run anything that is data-in-disk-files
oriented

- Focus on security (single user keys, proper keychain, proper isolation of
individuals, no network based security part of scheme)

- Optimizations will be in Lisp

- Many subjobs are Lisp jobs (most are GPU computing)

Distributed jobdir execution

- Hundreds of subjobs

- Subjobs can depend on previous jobs output

- Incremental jobdirs, update while it is executing

- No fixed machine assigning, new jobs picked up from graph as available

Heterogeneous fleet:

- Fast CPU (dumb jobs), many cores (multithreaded jobs), different GPUs
- Jobdir has ~150 GPU subjobs in 4-8 “classes”

- Different classes have different relative speed on different GPU types

- Matching between subjob class and GPU type known-ish

www.cons.org/graph.dot.pdf

Dependency graph
above turns into job pot
execution like this. =

gpu wai(%ng
cpu waiting
gpu

cpu

cando ————

20 AWS ec2 GPU g =
instances, Chris’ %
daughters gaming -
computer, GPU and CPU
from Martin’s datacenter - -

Jobs

rrrr1rrrr1rrr 11T 11T 17T 1T 17T
N e Y

48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10

Mo A~

gpu Waiting pemm -

cpu waiting pmmm -

gPu mm |

CPU |

cando ——— -

s | | mt ‘ |
0 100 200 300 400 500 600 700 800

x seconds from begin, y parallel jobs (additive bars)

900

Lisp advocacy

Drive home the message “we don’t just need readable software, we need
changeable software”.

That requires compile-time computing. Keep every assumption you make during
implementation in a single place. Generate all the other places where that
assumption is needed from that one location, with compile-time code. You cannot
hunt down human-driven spread of that assumption.

https://medium.com/@MartinCracauer

A gentle introduction to Compile-Time
Computing — Part 1

9 119 [l Vv

bip - business in progress

E. Klockmann
H. Paulsen
T. Pohl
D. Junker

STK Consulting & Development GmbH

02. Apr 2019

Enterprise Resource Planning (ERP) for
@ Finance & Accounting

Human resources

Order Processing

Supply chain management

Project management

Customer relationship management

bip kernel + modules
@ bip industry
@ bip logistics
@ bip insurance
@ bip ...

individual methods/add-ons/customizations

generic

DB-access
HTTP(S)-Server
E-Mailing

CSV import/export
XBRL

odt/pdf printfiles

project development

User
Concept >> Classes >> Methods >>Interface \
Generic //

Produkt

overview

Browser generic

FR5N

DB Pool Filesystem

classes D
methods

classes

(def-db-class vkd-contract 2678 (vkd)
(print-invoice nil button

{contract-nr

(:list 18))
(show))
{client reference
client
(show))
(cl redundancy
client
:list 38))
ishow create add edit delete))
(due-date date
i(Contract” 9@))
ishow create edit delete))
(payment-period selection
options B)
12)
6)
3)
1))
({"cal 218))
(show create edlt delete))
{j-n-amount real
({"Calculation” 330} (:list 118})
({:width 1))
(show))

classes

¥)
XK)

Print-invoice

Print-Contract

Show Calculation

Admin
external documents

Contract
Contract-Nr Aa
Ext-Cl-Nr |—
Due-date 01.01.2019 l::l
Auto-renewal @YESC)ND
Client

cl |Doe
conr [1337 n
Bic | GENODEF1XXX !i

Iban 22 | DE42 0815 1234 1337 0000 00

Address

Calculation

C-condition |"N'P Hand Ang .
Payment-period | annually E
J-B-Amount
Currency | EUR n

why Common LISP?

@ Macros
e class description
e method definition
e print settings

@ error handling
e writing log files
@ message to browser
e roll-back on error

process clean up
o restart task while debugging

recompiling

bip - business in progress

E. Klockmann
H. Paulsen
T. Pohl
D. Junker

STK Consulting & Development GmbH

02. Apr 2019

Experimental Scheme

Christian Jaeger
ch@christianjaeger.ch

Exploring syntax

require easy

def (f x
square (1nc X

def g (comp square 1inc

" (TEST
> (for-all* (=> (produce-stream random-integer*
.take 200

fg

Modules and predicates

defmodule (<list-of> T7?
export null null? pair? cons first rest map fold

def null (vector '<null-of> T?
def (null? v
eq? v null

def pair-tag (vector '<list-of> T?
def (pair? v
and (vector? v
= (vector-length v) 3
eq? (vector-ref v 0) pair-tag

def list? (either null? pair?

def (cons [T? v] [list? 1]
vector pair-tag v 1

(Module cont.)

def (first [pair? 1] vector-ref 1 1

def (rest [pair? 1] vector-ref 1 2

def (map fn [list? 1]
it (null? 1) 1
cons (fn (first 1
map fn (rest 1

def (fold fn start [list? 1]
if (null? 1) start
fold fn (fn start (first 1

rest 1

(Module cont.)

TEST
> (modimport/prefix integer: (<list-of> integer?
> (%try (integer:cons "a" integer:null
exception text: "v does not match T?: \"a\"\n"
> (integer:fold
+ 0
integer:map square
integer:cons 2
integer:cons 3 integer:null
13

Object oriented

defclass ((oolist oolist) [predicate? T7?]

defmethod (cons s [(.T? s) v]
oolist-pair T? v s

def oolist-of T?) v
and (oolist? v
eq? (oolist.T? v) T7?

defclass (oolist-null

defmethod (map s fn
S

defclass (oolist-pair [T? first]
[oolist? rest]

defmethod (map s fn
oolist-pair T? (fn first .map rest fn

(Object oriented cont.)

def. (oolist-null.fold s fn start
start

def.* (oolist-pair.fold s [function? fn] [(.T? s) start]
.fold rest fn (fn start first

TEST
> (%try (=> (oolist-null integer?
.cons "a"
exception text: "v does not match (.T? s): \"a\"\n"

> (=> (oolist-null integer?
.cons 3
.cons 2
.map square
.fold + 0
13

ch@christianjaeger.ch
github.com/pflanze/chj-schemelib
www.meetup.com/London-Metaprogrammers/

