
Lazy, Parallel Multiple Value Reductions in
Common Lisp

Marco Heisig
Chair for System Simulation, FAU Erlangen-Nürnberg
01.04.2019

Before we begin . . .

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 2

Table of contents

1. Motivation

2. The Function β

3. Implementation

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 3

Motivation

Reductions are Awesome!

(defun fold (f z l)
(if (null l)

z
(fold f (funcall f (first l) z) (rest l))))

• sum
(fold #’+ 0 numbers)

• maximum
(fold #’max 0 non-negative-numbers)

• reversal
(fold #’cons ’() list)

• filtering
(fold (lambda (i j) (if (oddp i) (cons i j) j))

’() list)

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 4

Problem #1 - Parallelism

f

f

f

f

z (first l)

(second l)

(third l)

(fourth l)

• Long serial chain of
dependencies.

• Execution time will always be
time(f) · length(l).

• Exascale computers expected
in 2021.

“foldl and foldr Considered Slightly Harmful” – Guy Steele

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 5

Problem #2 - Multiple values

• Life, as it should be:

(reduce #'fn values :initial-value iv)

• Life, as it is:

(loop for value in values
for elt across aux
for idx from 0
for acc-1 = (fn-1 value elt idx)
for acc-2 = (fn-2 acc-1 elt idx)
finally (return (values acc-1 acc-2)))

Goal: Reductions on multiple streams of data at once.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 6

The Goals

• Parallelism
O(log(N)) runtime on a sufficiently parallel machine.

• Multiple values
Gather multiple quantities from multiple sources.

• Laziness
Programmers should not have to cripple their source code to avoid
allocation of intermediate data.

• Array Programming
Support for multi-dimensional arrays.

• Performance
Competitive to a good cl:reduce.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 7

Context: The Petalisp Project

• A Common Lisp library for elegant parallel programming.
• The core data structures are lazy, strided arrays.
• All operations are deterministic and purely functional.
• Petalisp has only four core operators. Parallel reduction is one of

them.
• Arrays are evaluated by calling compute.

Interested?

(ql:quickload :petalisp)

https://github.com/marcoheisig/Petalisp

/join #petalisp

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 8

https://github.com/marcoheisig/Petalisp

The Function β

Definition

(defun β (f array &rest more-arrays) . . .)

• f must accept 2k arguments and return k values, where k is the
number of supplied arrays.

• All supplied arrays must have the same shape S = r1 × . . .× rn,
where each range rk is a set of integers, {0, 1, . . . ,m}.

• Returns k arrays of shape s = r2 × . . .× rn, whose elements are a
combination of the elements along the first axis of each array.

It remains to clarify how we combine elements of the first axis.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 9

The Reduction Rules

• k arrays of dimension n and shape S
• f is a function from 2k arguments to k values
• n − 1 dimensional output shape s

1. If the given arrays are empty, signal an error.*
2. If the first axis of each given array contains exactly one element,

drop that axis and return the resulting k arrays of shape s.
3. Otherwise

• Split each array into a lower and an upper half.
• Recurse into each of the two halves.
• Combine the 2k resulting arrays of shape s element-wise with f .
• Return the resulting k arrays of shape s.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 10

A Simple Example

Example: (β #’fn (vector a b c d))

• The number of arrays k is 1.
• The input shape S is ({0, 1, 2, 3}).
• The output shape s is (), i.e. the result is a scalar.

fn

fn

(elt a 0) (elt a 1)

fn

(elt a 2) (elt a 3) Rule 2

Rule 3

Rule 3

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 11

Parallelism

(reduce #’+ array) (β #’+ array)

Number of Additions N − 1 N − 1

Dependency Tree Depth N − 1 dlog2(N)e

⇒ The function β is well suited for parallel computing.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 12

Multiple Values

Computing both the maximum element and its index:

(defun max* (x)
(β (lambda (lv li rv ri)

(if (> lv rv)
(values lv li)
(values rv ri)))

x (indices x 0)))

Look Ma, no loops!

(multiple-value-call #'compute (max* #(2 4 6 1 3)))
→ 6
→ 2

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 13

Multiple Values and Multiple Dimensions

Computing both the maximum element and its index:

(defun max* (x)
(β (lambda (lv li rv ri)

(if (> lv rv)
(values lv li)
(values rv ri)))

x (indices x 0)))

. . . works for multi-dimensional arrays, too!

(m-v-c #'compute (max* #2A((2 4) (6 1))))
→ #(6 4)
→ #(1 0)

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 14

Implementation

Implementing β is Hard

The function β has many degrees of freedom:
• The number of supplied arrays k .
• The rank of the supplied arrays d .
• The element type of each supplied array.

And this is without taking lazy evaluation into account!

Our reference implementation is terribly slow, with gems like

(values-list
(subseq
(multiple-value-list

(multiple-value-call f
(divide-and-conquer ls le)
(divide-and-conquer us ue)))

0 k))

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 15

Making β Fast

• For classical sequence functions, it is common to define multiple
specialized versions.

• We cannot use this trick, because we’d require DEk versions, where
D is the supported number of dimensions and E is the number of
specialized array element types.

What we do instead:
• Compute a normalized problem description.
• Turn this problem description into efficient Lisp code.
• Use cl:compile to generate a fast evaluator.
• Invoke the compiled function on the supplied arrays.
• Cache the compiled function, using the normalized problem

description as key.

Result: (β #’+ v) can actually inline #’+!
Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 16

The Petalisp JIT-Compiler

Each Petalisp evaluation consists of the following steps:

1. Broadcasting, Type Inference, Shape Checking
2. Data-flow Optimization
3. IR-Conversion
4. Normalization
5. Scheduling
6. Code Generation
7. Compilation
8. Execution

• Thanks to memoization, the steps 6. and 7. can usually be skipped.
• The steps 5. and 8. can usually overlap.
• The challenge is getting the steps 1. to 4. fast enough.
• We are down to a few microseconds, but need to get better.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 17

Optimization Showcase - a call to max*

(labels ((divide-and-conquer (min max)
(if (= min max)

(let ((index (+ min (* #:g3 #:g4))))
(let* ((v (row-major-aref a0 index))

(i (identity index)))
(values v i)))

(let ((mid (+ min (floor (- max min) 2))))
(multiple-value-call

(lambda (l0 l1 r0 r1)
(multiple-value-bind (r0 r1)

(funcall f l0 l1 r0 r1)
(values r0 r1)))

(divide-and-conquer min mid)
(divide-and-conquer (1+ mid) max))))))

...)

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 18

Future Challenges

Challenges for the next months:

• Reduce the latency of compute.
• Add proper multi-threading.
• Further tweak the generated code.

Challenges for the next few years:

• Distributed Computing
• GPU offloading

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 19

Thank you!

Questions or remarks?

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 20

	Motivation
	The Function ß
	Implementation

