Lazy, Parallel Multiple Value Reductions in
Common Lisp

Marco Heisig
Chair for System Simulation, FAU Erlangen-Nirnberg
01.04.2019

FRIEDRICH-ALEXANDER
NIVERSITAT
ERLANGEN-NORNBERG.

Before we begin ...

Marco Heisig | Chair for System Simulation

Lazy, Parallel Multiple Value Reductions in Common Lisp 01.04.2019 2

Table of contents

1. Motivation
2. The Function 3

3. Implementation

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp

01.04.2019

FRIEDRICH-ALEXANDER
UNIVERSITAT
ERLANGEN-NURNBERG

FACULTY OF ENGINEERING

Motivation

Reductions are Awesome!

(defun fold (f z 1)
(if (null 1)
z
(fold f (funcall f (first 1) z) (rest 1))))

e sum
(fold #’+ @ numbers)
e maximum
(fold #’max @ non-negative-numbers)
e reversal
(fold #’cons ’() list)
o filtering
(fold (lambda (i j) (if (oddp i) (cons i j) J))

() list)

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Problem #1 - Parallelism

¢ Long serial chain of
dependencies.

(fourth 1) * Execution time will always be

\ time(f) - length(/).
) e Exascale computers expected
(third 1) in 2021.

/ -
f (second I)
N\

z (first 1)

“foldl and foldr Considered Slightly Harmful” — Guy Steele

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Problem #2 - Multiple values

¢ Life, as it should be:

(reduce #'fn values :initial-value iv)

e Life, asitis:

(loop for
for
for
for
for

value in values
elt across aux
idx from ©

acc-1 = (fn-1 value elt idx)
acc-2 = (fn-2 acc-1 elt idx)

finally (return (values acc-1 acc-2)))

Goal: Reductions on multiple streams of data at once.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp

01.04.2019

The Goals

¢ Parallelism
O(log(N)) runtime on a sufficiently parallel machine.
e Multiple values
Gather multiple quantities from multiple sources.
e Laziness
Programmers should not have to cripple their source code to avoid
allocation of intermediate data.
e Array Programming
Support for multi-dimensional arrays.
¢ Performance
Competitive to a good cl: reduce.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Context: The Petalisp Project

A Common Lisp library for elegant parallel programming.
The core data structures are lazy, strided arrays.
All operations are deterministic and purely functional.

Petalisp has only four core operators. Parallel reduction is one of
them.

e Arrays are evaluated by calling compute.

Interested?
(gql:quickload :petalisp)
https://github.com/marcoheisig/Petalisp

/join #petalisp

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

https://github.com/marcoheisig/Petalisp

FRIEDRICH-ALEXANDER
UNIVERSITAT |
ERLANGEN-NURNBERG

FACULTY OF ENGINEERING

The Function 3

Definition

(defun B (f array &rest more-arrays) .. .)

e f must accept 2k arguments and return k values, where k is the
number of supplied arrays.

¢ All supplied arrays must have the same shape S=r; x ... X p,
where each range ri is a set of integers, {0,1,..., m}.

e Returns k arrays of shape s = r> x ... X r,, whose elements are a
combination of the elements along the first axis of each array.

It remains to clarify how we combine elements of the first axis.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

The Reduction Rules

e k arrays of dimension n and shape S
e fis a function from 2k arguments to k values
e n — 1 dimensional output shape s

1. If the given arrays are empty, signal an error.*

2. If the first axis of each given array contains exactly one element,
drop that axis and return the resulting k arrays of shape s.

3. Otherwise

¢ Split each array into a lower and an upper half.

¢ Recurse into each of the two halves.

e Combine the 2k resulting arrays of shape s element-wise with f.
¢ Return the resulting k arrays of shape s.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019 10

A Simple Example

Example: (B #’fn (vector a b c d))

e The number of arrays k is 1.
e The input shape Sis ({0, 1,2,3}).
e The output shape s is (), i.e. the result is a scalar.

Rule 3

/N /N

(elta0) (elta1) (elta?2) (elta3) Rule 2

Rule 3

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Parallelism

(reduce #’+ array) (B #'+ array)
Number of Additions N —1 N —1

Dependency Tree Depth N — 1 [log,(N)]

= The function B is well suited for parallel computing.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Multiple Values

Computing both the maximum element and its index:

(defun max* (x)
(B (lambda (1lv 1i rv ri)
(if (> 1v rv)
(values 1lv 1i)
(values rv ri)))
X (indices x 0)))

Look Ma, no loops!

(multiple-value-call #'compute (max* #(2 4 6 1 3)))
> 6
> 2

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Multiple Values and Multiple Dimensions

Computing both the maximum element and its index:

(defun max* (x)
(B (lambda (lv 1li rv ri)
(if (> 1v rv)
(values 1lv 1i)
(values rv ri)))
x (indices x 0)))

... works for multi-dimensional arrays, too!

(m-v-c #'compute (max* #2A((2 4) (6 1))))
> #(6 4)
> #(1 0)

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

FRIEDRICH-ALEXANDER
UNIVERSITAT |
ERLANGEN-NURNBERG

FACULTY OF ENGINEERING

Implementation

Implementing [is Hard

The function B has many degrees of freedom:
e The number of supplied arrays k.
e The rank of the supplied arrays d.
¢ The element type of each supplied array.

And this is without taking lazy evaluation into account!

Our reference implementation is terribly slow, with gems like

(values-list
(subseq
(multiple-value-list
(multiple-value-call f
(divide-and-conquer 1s le)
(divide-and-conquer us ue)))
9 k))

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Making (3 Fast

¢ For classical sequence functions, it is common to define multiple
specialized versions.

e We cannot use this trick, because we’d require DE¥ versions, where
D is the supported number of dimensions and E is the number of
specialized array element types.

What we do instead:

e Compute a normalized problem description.
Turn this problem description into efficient Lisp code.
Use cl:compile to generate a fast evaluator.
Invoke the compiled function on the supplied arrays.

Cache the compiled function, using the normalized problem
description as key.

Result: (3 #’+ v) can actually inline #’ +!

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019 16

The Petalisp JIT-Compiler

Each Petalisp evaluation consists of the following steps:

Broadcasting, Type Inference, Shape Checking
Data-flow Optimization

IR-Conversion

Normalization

Scheduling

Code Generation

Compilation

Execution

© N OAWN A

¢ Thanks to memoization, the steps 6. and 7. can usually be skipped.
e The steps 5. and 8. can usually overlap.

¢ The challenge is getting the steps 1. to 4. fast enough.

e We are down to a few microseconds, but need to get better.

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019 17

Optimization Showcase - a call to maxx*

(labels ((divide-and-conquer (min max)
(if (= min max)
(let ((index (+ min (* #:g3 #:g24))))
(letx ((v (row-major-aref a@ index))
(i (identity index)))
(values v 1)))
(let ((mid (+ min (floor (- max min) 2))))
(multiple-value-call
(lambda (10 11 ro r1)
(multiple-value-bind (ro ri1)
(funcall f 10 11 ro r1)
(values ro r1)))
(divide-and-conquer min mid)
(divide-and-conquer (1+ mid) max))))))

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Future Challenges

Challenges for the next months:

¢ Reduce the latency of compute.
¢ Add proper multi-threading.
¢ Further tweak the generated code.

Challenges for the next few years:

e Distributed Computing
e GPU offloading

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019

Thank you!

Questions or remarks?

Marco Heisig | Chair for System Simulation | Lazy, Parallel Multiple Value Reductions in Common Lisp ~ 01.04.2019 20

	Motivation
	The Function ß
	Implementation

