universite
“BORDEAUX o

Partial Inlining Using Local Graph Rewriting

Iréne Durand & Robert Strandh

LaBRI, University of Bordeaux

April, 2018

European Lisp Symposium, Marbella, Spain ELS2018

Context: The SICL project

https://github.com /robert-strandh /SICL

In particular, the Cleavir implementation-independent compiler
framework that is currently part of SICL.

High-level Intermediate Representation

Cleavir uses (at least) two intermediate representations:

» Abstract Syntax Trees (ASTs) created from source code and a
global environment.

» High-level Intermediate Representation (HIR) created from
ASTs.

High-level Intermediate Representation

HIR is similar to the kind of flow graphs used in traditional
compiler design.

Main difference: In HIR, only Common Lisp objects are
manipulated.

By restricting HIR data this way, we can apply most of our
optimization techniques to this representation, including type
inference.

HIR instruction categories

The following categories exist:
> Low-level accessors such as car, cdr, rplaca, rplacd, aref,
aset, slot-read, and slot-write.

» Instructions for low-level arithmetic on, and comparison of,
floating-point numbers and fixnums.

> Instructions for testing the type of an object.

> Instructions such as funcall, return, and unwind for
handling function calls and returns.

Two particular HIR instructions

Two HIR instruction types have no correspondence in Common
Lisp source code:
» The enter instruction is the first instruction of a sub-graph
corresponding to a function.

» The enclose instruction creates a callable function from an
enter instruction and the current environment.

~

Previous work

Most work focuses on when to inline.

How to inline is not discussed much, because as Chang and Hwu
put it: “The work required to duplicate the callee is trivial”

Trivial in functional programming

The mechanism of inlining is trivial in the context of functional
programming.

Simply replace the call by a copy of the body of the callee, with

each occurrence of a parameter replaced by the corresponding
argument (-reduction).

(defun £ (x y) (+ x (*x x y)))
(defun g (a) (£ (+ a 2) 234))
becomes

(defun g (a) (+ (+ a 2) (x (+ a 2) 234)))

Not trivial in the presence of side effects

The mechanism of inlining is not trivial in the context of a
language that allows side effects. We can not use simple
[B-reduction.

(defun f (x y) (setq x y))

(defun g (a) (f a 3) a)

becomes

(defun g (a) (setq a 3) a)

9/28

Our technique: local graph rewriting

Basic idea:

enter

ca

11

enter

ca

11

Our technique: restrictions

]

Only avoiding call/return is no longer important.
We also want to allocate the environment of the callee in the caller.

This restriction excludes some situations:

» Some cases when the environment of the callee is captured.

» When the callee is directly or indirectly recursive.

We have yet to work out necessary and sufficient conditions.

Running example

m=lofo

Our technique: worklist

We maintain a worklist containing:

v

A funcall instruction (caller).

» An enter instruction (callee).

v

The successor instruction of the enter instruction, called the
target instruction.

» A mapping from lexical variables in the callee that have
already been duplicated in the caller.

Our technique: global information

We also maintain the following global information:

» A mapping from instructions in the callee that have already
been inlined, to the corresponding instructions in the caller.

» Information about the ownership of lexical variables referred
to by the callee.

Our technique: initialization

» Create a copy of the initial callee environment in the caller.

> Create an initial worklist containing:

» The funcall instruction representing the call that should be
inlined.

» A private copy of the initial enter instruction of the function
to inline.

» The successor instruction of the initial enter instruction,
which is the initial target.

» The initial lexical variable mapping.

Initial instruction graph

m=lofo

16/28

Instruction graph after initialization

@
i
T ‘yy ter
- “‘)

4

return

funcallA| enterA 1 wE = %

worklist

17/28

Our technique: one of four rules

In each iteration of our technique, one of the following rules is

applied:

1. If the target instruction has already been inlined, then use the
existing inlined copy. No new worklist item is created.

2. If the target instruction is a return instruction, then remove
call and fix up. No new worklist item is created.

3. If the target instruction has a single successor, then inline it,
mapping lexical variables. Create one new worklist item.

4. If the target instruction has two successors, then inline it,

mapping lexical variables. Also replicate the funcall and
enter instructions. Create two new worklist items.

Instruction graph after initialization

@
i
T ‘yy ter
- “‘)

4

return

funcallA| enterA 1 wE = %

worklist

19/28

Instruction graph after one inlining step

20/28

funcallA

worklist

Instruction graph after two inlining steps

enter

| - - - h J

enterA‘

enterB‘

Py \

return

funcallA ‘funcallB‘
funcallB| enterB return | ww - w
zZ — Z
funcallA| enterA 1
WW — W
worklist

21/28

Instruction graph after three inlining steps

2E

vy

//

funcallA‘ ‘ = ‘

enterA

return

funcallA

enterA 1

27 = &

WW - W

worklist

Instruction graph after four inlining steps

enter

23/28

Final instruction graph

24/28

Our technique: characteristics

» Each iteration preserves the overall semantics.
> Inlining can be stopped at any point, making it partial.

» We prove termination even in the presence of loops.

Future work

» Determine necessary and sufficient conditions for our
technique to be valid.

» Investigate consequences of multiple entry points for other
optimization techniques and analyses.

Acknowledgments

We would like to thank Bart Botta, Jan Moringen, John Mercouris,
and Alastair Bridgewater for providing valuable feedback on early
versions of this paper.

N
~
N
e

Thank you

Questions?

28/28

