universite
“BORDEAUX o

Incremental Parsing of Common Lisp Code

Iréne Durand & Robert Strandh

LaBRI, University of Bordeaux

April, 2018

European Lisp Symposium, Marbella, Spain ELS2018



Context

Emacs is likely the most common editor for Common Lisp code.

» The current package is not taken into account.

v

The indent function can not distinguish between forms and
bindings.

v

No distinction between different roles of symbols.

v

Incorrect indentation is not indicated.

2/41



Taking packages into account

Emacs does not take packages into account for syntax highlighting.
This code is highlighted correctly:

(defpackage :p (:use :common-lisp))

(in-package :p)

(defun f (x) x)



Taking packages into account

Emacs does not take packages into account for syntax highlighting.

This code is not highlighted correctly:

(defpackage :p (:use))
(in-package :p)

(defun f (x) x)



Distinguishing between forms and bindings

Emacs does not distinguish between forms and bindings.

This binding is indented in one way:

(let ((temp
(find key *entries* :test #’eq :key #’car)))
.2

5/41



Distinguishing between forms and bindings

Emacs does not distinguish between forms and bindings.

This binding is indented in a different way:

(let ((progl
(find key *entries* :test #’eq :key #’car)))
.

And the role of progl is not taken into account.



Indicating incorrect indentation

Emacs does not indicate bad indentation.

This form contains an incorrect indentation:

(let* ((x (expt *result* 3))
(declare (float x)))
(+ x 1.0))

7/41



Objectives

An excellent editor for Common Lisp code:

» Take current package into account.

v

Distinguish forms from other entities.

v

Show incorrect indentation.

v

Take roles of symbols into account.

v

Provide refactoring functionality.

8/41



First step towards objectives

Create an incremental parser for Common Lisp code that yields a
considerably more accurate result than existing parsers.

9/41



Recapitulation: Editor buffer protocol

Presented at ELS 2016.

Two sub-protocols:

» Edit protocol. Access, insert, or delete an item. Can be
invoked a large number of times for each keystroke.

» Update protocol. Determine changes since last update.
Typically invoked once for each keystroke.

For the current work, we are only interested in the update protocol.

10/41



Our technique: Parse result

The analysis of the buffer contents returns parse results.

A parse result contains:

» The start position and end position (line, column) in the
buffer of the parse result.

» The type (expression, comment, etc) of the parse result.
> A possibly empty list of children.



Our technique: Cache of parse results

We maintain a cache that maps buffer positions to parse results.

il

illin




Our technique: Two phases

Our incremental parser has two phases:

» Invalidation.
» Rehabilitation.

13/41



Invalidation phase

Step 1: Invoke the update protocol of the buffer.

Editor buffer

update

Editor buffer copy

14/41




Invalidation phase

Step 2: Update protocol emits update information.

Editor buffer

update modi £y
insert
skip

sync

Editor buffer copy




Invalidation phase

Step 3: Compare to buffer copy.

Editor buffer

update -
insert
skip

sync

Editor buffer copy

16/41



Invalidation phase

Step 4: Convert to modify, insert, delete.

Editor buffer

update

modify
insert
delete

Editor buffer copy

17/41




Invalidation phase

Step 5: Check whether any parse result is affected.

Editor buffer

update

modify
insert
delete

Editor buffer copy

18/41



Invalidation phase

19/41

Step 6: If so, remove or split it.

Editor buffer

update

insert remove
skip split
sync

Remove

Editor buffer copy




Invalidation phase

Step 7: Keep parse results that are still valid.

Editor buffer

update

insert remove
skip split
sync

Remove

modify acess
insert
delete

Editor buffer copy

20/41



N

Rehabilitation phase

We use a modified version of the standard Common Lisp function
read:

> It returns parse results instead of expressions.

> It also returns parse results corresponding to non-expressions.



N

Rehabilitation phase

The modified read function uses a Gray stream that accesses the
contents of the text buffer.

N
~



Rehabilitation phase

Step 1: Conceptually invoke read on entire buffer copy.

Gray
stream

Jo U

Editor buffer copy

23/41



Rehabilitation phase

Step 2: Check whether a parse result exists in the cache.

Gray
stream

Editor buffer copy

24 /41



Rehabilitation phase

Step 3a: If so, update position and return from reader.

return

read

Editor buffer copy

25/41



Rehabilitation phase

Step 3b: If not, access characters from buffer copy.

Jo U

Editor buffer copy

26/41



Rehabilitation phase

Step 3b: The result is a new parse result.

Editor buffer copy

27/41



Rehabilitation phase

Step 4b: Remove overlapping parse results from cache.

Gray
stream

remove-overlap

Editor buffer copy

28/41



Rehabilitation phase

Step 5b: Insert new parse result into cache.

Gray
stream

11111

Editor buffer copy

29/41



Rehabilitation phase

Step 6b: Return the new parse result.

Gray
stream

Editor buffer copy

30/41

0o L



Optimizations

» We skip a prefix of unmodified material.

» We skip a suffix of unmodified material, provided that
structure is preserved.

» The cache representation is optimized for small modifications.



Performance

Tests run on a 4-core Intel Core processor clocked at 3.3GHz,
running SBCL version 1.3.11.



Performance Inserting and deleting a constituent character

nb forms | form size time
120 10 | 0.14ms

80 15 | 0.14ms

60 20 | 0.14ms

24 100 | 0.23ms

36 100 | 0.32ms

33/41



Performance Inserting and deleting a constituent character

Inserting and deleting a constituent character
035 T T T T T

Time in ms

0 L L L L L
1000 1500 2000 2500 3000 3500 4000
Number of lines

34/41



Performance Inserting and deleting a left parenthesis

nb forms | form size time
120 10 | 1.3ms

80 15 | 1.0ms

60 20 | 0.5ms

40 30 | 0.7ms

30 40 | 0.6ms

24 50 | 0.5ms

12 100 | 0.5ms




Performance Inserting and deleting a left parenthesis

36/41

Time in ms

Inserting and deleting a left parenthesis

20 40 60 80 100
Number of forms

120



Performance Inserting and deleting a double quote

nb forms | form size | characters per line | time
120 10 1 | 18ms

80 15 1 | 15ms

60 20 1| 17ms

24 100 1 | 33ms

36 100 1 | 50ms

120 10 30 | 70ms




Time in ms.

70

40

Inserting and deleting a double quote

5000

10000

15000 20000 25000
Number of characters

30000

35000

40000



Future

30/41

work

Use parse result to compute indentation.

Implement incremental version of first-class global
environments.

Use new environment implementation to compile top-level
forms at typing speed.

Display information from compilation.

Implement refactoring tools based on compilation.



Acknowledgments

We would like to thank Philipp Marek and Cyrus Harmon for
providing valuable feedback on early versions of this paper.

40/41



Thank you

Questions?

41/41



