
Program proving and synthesis with the Coq proof assistant

Program proving and synthesis with the Coq
proof assistant

Pierre Castéran
University of Bordeaux, and LaBRI

Kraków, May 9 2016

Program proving and synthesis with the Coq proof assistant

Overview

1 What is Coq?

2 Examples in Functional Programming
Coq as a programming language
Propositions, predicates, etc.
Interactive proofs
A case study

3 What about non purely functional languages?
An example with Frama-C

4 Conclusion and Perspectives
Should we trust a Coq-certified software ?
Interactive Theorem/Program Proving
Some Perspectives
Some Links

Program proving and synthesis with the Coq proof assistant

What is Coq?

What is Coq?

A (not so efficient) purely functional, statically typed, not
Turing complete, programming language,

A proof assistant, allowing to build interactively large proofs
of mathematical statements and/or program correctness.

A proof checker, that verifies whether its argument is a
correct proof of a given statement.

In fact, proofs are programs, theorem statements and program
specifications are types, and the proof checker is “just” a type
checker.

Program proving and synthesis with the Coq proof assistant

What is Coq?

History

The ancestors

1971 Nqthm (Boyer – Moore) Automated proofs of Lisp
functions. ACL2 is the current stage of this research.

1980 LCF (Robin Milner). Interactive proofs of program
correctness; invention of ML for programming proof
tactics.

1980 Intuitionnistic Theory of types (P. Martin-Löf).

1984 Nuprl (R. Constable) Software design from formal
proofs, based on Martin-Löf’s theory.

Program proving and synthesis with the Coq proof assistant

What is Coq?

The Calculus of Constructions and Coq

1984 The Calculus of Constructions (T. Coquand and G.
Huet)

1985 CoC: First Implementation of this calculus

1988 The Calculus of Inductive Constructions
(C. Paulin-Mohring). The Coq system takes its
definitive form:

A (rather small) kernel for verifying the proofs
A set of tools for interactive proof construction,
in a LCF-like way,
A standard library, containing definitions,
theorems and tactics for many data-types.
A repository of users contributions.

Program proving and synthesis with the Coq proof assistant

What is Coq?

Main realizations

2002 EAL7 certification of JavaCard

2005 Formal proof of the Four-colors theorem (G. Gonthier
and B. Werner)

2008 First version of the Compcert verified C compiler (X.
Leroy et al.)

2012 Proof of the Feit-Thompson theorem (Mathematical
Components Group)

2015 Verasco : a static analyzer for the Compcert subset
of ISO C 1999 that establishes the absence of
run-time errors in analyzed programs.

Program proving and synthesis with the Coq proof assistant

What is Coq?

2013: ACM Sigplan Programming Languages Award and
ACM Software System Award

Because it can be used to state mathematical theorems
and software specifications alike, Coq is a key enabling
technology for certified software.

Coq has played an extremely influential role in several
disciplines including as formal methods, programming
languages, program verification, and formal mathematics.
With increasing emphasis on the design and development
of secure applications, certification has become important
to the academic community as well as industry.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Coq as a programming language

Coq as a (strange) programming language

Let us consider a simple programming example : efficient
computation of an.

Definition in Gallina, the specification language of Coq:

Statically (strongly) typed
Not even Turing complete (all computations must terminate)

Formal specification and correctness proof

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Coq as a programming language

In Coq, every variable is typed.

Polymorphism is described with type variables.

Type variables are variables, so they also have a type (called a
sort).

Section Definitions.

Variable A : Type.

Variable one : A.

Variable mult : A -> A -> A.

Infix "*" := mult.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Coq as a programming language

Coq’s logic requires that the evaluation of any expression
terminates. Thus, it loses Turing completeness.
Allowed recursive definition must follow the structure of the
datatype on which they operate. For instance, parity test and
division by 2 on positive integers are expressed through pattern
matching on their binary representation.

Function bin_expt (a: A) (p : positive) : A :=

match p with

| 1 => a

| (* 2 * q *)

q~0 => bin_expt (a * a) q

| (* 2 * q + 1 *)

q~1 => a * bin_expt (a * a) q

end.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Coq as a programming language

Remarks

Programming in Coq is not limited to primitive recursive
functions.

The class of functions definable in Gallina contains all
functions that are provably total in higher-order logic.

The cost of this large expressive power is that some complex
function definitions must include proofs of their termination.

Fortunately, a collection of “design patterns” is being
developed and documented.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Propositions, predicates, etc.

Propositions, predicates, etc.

Coq’s type system, in addition to types like Z, positive, Type, etc.,
contains a sort Prop, that contains logical statements.
The following declarations express that all our forthcoming
constructions will be guaranteed only for types that can be
provided with a monoid structure.

Hypothesis mult_assoc :

forall a b c: A, a * (b * c) = (a * b) * c.

Hypothesis one_left : forall a, one * a = a.

Hypothesis one_right : forall a, a * one = a.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Propositions, predicates, etc.

Expressing correctness

Correctness of a function like bin expt can be expressed in terms of
a näıve, straightforward implementation of exponentiation.

Function power (x:A)(n:nat) : A :=

match n with

| 0%nat => one

| S p => x * power x p

end.

Infix "^" := power.

Definition correct_expt (f : A -> positive -> A) :=

forall a n, f a n = a ^ n.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Interactive proofs

Interactive proofs

How to prove a theorem?

1 You give the statement, as a well-typed expression.

2 Proving this statement is transformed into a goal

3 You use tactics for breaking goals into subgoals

4 When no goal remains to be solved, Coq computes a term and
checks whether its type is the announced theorem statement.

5 The theorem (including the proof) is registered for further
applications.

Let us look (partially) at a small demo (file expt.v)

expt.v

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

Interactive proofs

What are the tactics?

Tactics asssociated with the basic rules of logic (connectives,
quantifiers, etc)

Tactics associated with data-types : proof by cases, induction,
etc.

Tactics defined by the user :

Smart application of theorems
Using the dedicated language Ltac (tactic composition,
recursion, inspection of the subgoals)
Tactics by reflection (mix of computation and deduction)
Automation of [semi-]decidable problems : Presburger
arithmetics, ring structures, etc.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

A case study

A case study

For illustrating some certification techniques in functional
programming, we propose to consider a small example, still
about efficient computation of xn in any monoid.

It is well-known (since Brauer, Knuth, etc.) that the famous
binary exponentiation algorithm is not optimal.

With S. Brlek and R. Strandh, we studied the following
method :

1 For any n, generate a specific pogram (in Scheme)
2 Execute or compile this program

Let us look briefly present at a certification of this method.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

A case study

For instance, our generator computed the following algorithm for
computing x87 (more efficient than the binary algorithm).

x x2 x3 x6 x7 x10 x20 x40 x80 x87

Here is an automatically generated description in Coq.

Definition f (A : Type) (x : A) :=

x0 <--- x times x; x1 <--- x0 times x;

x2 <--- x1 times x1; x3 <--- x2 times x;

x4 <--- x3 times x1; x5 <--- x4 times x4;

x6 <--- x5 times x5; x7 <--- x6 times x6;

x8 <--- x7 times x3; Return x8

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

A case study

Which correctness statements ?

Two kinds of correctness statements deserve to be proved:

Generate, then certify

For a given n and a given program, prove that the program
correctly computes xn.

Certify a generator

Write a generator and prove one and for all that this generator
always returns a correct exponentiation program.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

A case study

Proof by Reflection

We want to prove efficiently that the following function computes
x87 in any monoid.

Definition f (A : Type) (x : A) :=

x0 <--- x times x; x1 <--- x0 times x;

x2 <--- x1 times x1; x3 <--- x2 times x;

x4 <--- x3 times x1; x5 <--- x4 times x4;

x6 <--- x5 times x5; x7 <--- x6 times x6;

x8 <--- x7 times x3; Return x8.

1

Prove that the application of f on any pair of types A and B leads
to similar computations. We say that f is parametric.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

A case study

2

By induction on the function body, we prove that any parametric
function defined in our toy language respects monoid
isomorphisms.

3

Take B as the type of natural numbers, replace multiplication by
addition. We prove that f is a correct implementation of λx . xn iff
f applied to 1 returns n.

Proof by computational reflection

Thus, a simple computation of f(1) is enough for proving f’s
correctness.

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

A case study

(** generic *)

Ltac parametric_tac :=

match goal with [|- parametric ?c] =>

red ; intros; repeat (right;[assumption | assumption |]);

left; assumption

end.

Ltac param_correct :=

match goal with [|- correct ?c ?p] =>

apply param_correctness; parametric_tac

end.

(** Example *)

Lemma f_ok : correct f 87.

Proof. param_correct. Qed.

(* Finished transaction in 0.005 secs (successful) *)

Program proving and synthesis with the Coq proof assistant

Examples in Functional Programming

A case study

Building a certified generator

1 Write, in Coq, or any suitable language, a function g of type
nat → forall A:Type, A → A.

2 Prove in Coq that for all n, (g(n))(x) computes xn.

For instance, a generator based on continued fraction expansion of
the exponent has been written:

1 A first version in Scheme (written by hand)

2 A certified version in Coq,

3 This last version can be extracted towards Scheme (to do)

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

What about non purely functional languages?

The use of Coq is not restricted to purely functional terminating
programs. For instance, it is used in the following contexts :

Certified compilers : Compcert,

Verifying assertions in imperative programs : Why3, Krakatoa,
Frama-C,

Static analysis of C programs : Verasco,

Research on distributed algorithms and reactive systems.

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

How does it work?

The considered language (for instance C) is enriched with a
language of assertions, (ACSL for C),

pre- and post-conditions,
loop invariants,
safety properties (pointer dereferencing, etc.)

A dedicated library (definitions, theorems and tactics)
describes the operational semantics of the considered language
(as a binary relation between machine configurations).

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

Two levels of verification

Certification of the tool:

Definition and certification in Coq of a verification condition
generator that reduces the validity of every assertions to the proof
of purely logical statements: the validity of all generated
verification conditions entails the correctness of every assertion in
any execution that respects the pre-conditions.

Certification of a program annotated with logical formulas

Attempt to prove each generated verification condition.

whenever possible, with an automated theorem prover :
Alt-Ergo, Simplify, Z3, etc.

or with proof assistants like Coq, PVS, Isabelle/HOL, etc.

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

An example with Frama-C

Example : Certification of a small C function

From frama-c.com/jessie.html

//@ requires n >= 1 && valid_range(t,0,n-1);

int binary_search(long t[], int n, long v) {

int low = 0, high = n - 1;

//@loop invariant 0 <= low && high <= n-1;

while (low <= high) {

int middle = (low + high) / 2;

if (t[middle] < v)

low = middle + 1;

else if (t[middle] > v)

high = middle -1;

else return middle;

}

return -1;

}

http://frama-c.com/jessie.html

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

An example with Frama-C

//@ requires n >= 1 && valid_range(t,0,n-1);

int binary_search(long t[], int n, long v) {

int low = 0, high = n - 1;

//@loop invariant 0 <= low && high <= n-1;

while (low <= high) {

int middle = (low + high) / 2;

...

}

Arithmetic Overflow§.

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

An example with Frama-C

integer_of_int_32(low) + integer_of_int_32(high) <=

2^31 - 1

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

An example with Frama-C

Functional specification

// @behavior success:

// @assumes

// forall integer k1, k2; 0 <= k1 <= k2 <= n-1

// ==> t[k1] <= t[k2];

// @assumes

// exists integer k; 0 <= k <= n-1 && t[k] == v;

// @ensures 0 <= \result <= n-1 && t[\result] == v

// @behavior failure:

// @assumes // v does not appear anywhere in the array t

// forall integer k; 0 <= k <= n - 1 ==> t[k] != v;

// @ensures \result == -1;

Program proving and synthesis with the Coq proof assistant

What about non purely functional languages?

An example with Frama-C

The CompCert certified compiler

CompCert

The CompCert project investigates the formal verification of
realistic compilers usable for critical embedded software. Such
verified compilers come with a mathematical, machine-checked
proof that the generated executable code behaves exactly as
prescribed by the semantics of the source program. By ruling out
the possibility of compiler-introduced bugs, verified compilers
strengthen the guarantees that can be obtained by applying formal
methods to source programs.

The main result of the project is the CompCert C verified compiler,
a high-assurance compiler for almost all of the ISO C90 / ANSI C
language, generating efficient code for the PowerPC, ARM and x86
processors.

Program proving and synthesis with the Coq proof assistant

Conclusion and Perspectives

Should we trust a Coq-certified software ?

Should we trust a Coq-certified software ?

The tool

According to Thomas Hales, any computer program contains
a bug in every 500 lines of source code.

For instance, the size of Coq’s sources tarfile is 4 MB of code
written in C, Ocaml, Coq.

What must be really bug-free is Coq’s critical kernel, which is
called for verifying whether a proof is correct. The risk is that
a buggy software gets a certificate.

The part of the software that helps the user to build a proof is
not critical. It would just make harder to obtain a proof.

Program proving and synthesis with the Coq proof assistant

Conclusion and Perspectives

Should we trust a Coq-certified software ?

Should we trust a Coq-certified software (2) ?

A development written by someone else

A development is composed of:

Definitions : data types, functions, predicates

Give human-readable, almost näıve definitions.
Give also smarter definitions, that make proving or computing
easier.
Prove that all these definitions are logically equivalent.

Axioms: Unsafe! may be (mutually) inconsistent

Prefer Hypotheses (with local scope).
At worst, non satisfiable hypotheses will generate useless, but
harmless results.

Theorems and certified programs (with kernel’s safety)

Program proving and synthesis with the Coq proof assistant

Conclusion and Perspectives

Interactive Theorem/Program Proving

Interactive vs. Automatic Theorem/Program Proving

Proving a program’s correctness requires the proof of many
statements, of various difficulty.

Use several trusted provers (automatic and/or interactive).

Begin with the most automatic solvers.

Keep interactive proving for the unsolved lemmas.

This methodology is compatible with tools like Why3 /Frama-C,
but also in the B-familiy : Rodin, Atelier-B, etc.

On can also program complex tactics, for automating whole classes
of [semi]-decidable problems.

Program proving and synthesis with the Coq proof assistant

Conclusion and Perspectives

Interactive Theorem/Program Proving

About the Diversity of Proof Assistants

According to wikipedia (article on Proof Assistants), there is
about 12 proof assistants, with various characteristics.

This diversity is excellent for the evolution of interactive
theorem proving. All these systems are mutually influenced.

Some specificities of Coq

Embedding of logic in functional programming: writing a
proof ort a tactic is writing a functional program.

Dependent types: e.g. prime number, sorted list, etc.

Possibility of deriving dedicated induction principles and
tactics.

Learning Coq requires some experience in functional
programming. Dependent types require some training.

./wiki.html

Program proving and synthesis with the Coq proof assistant

Conclusion and Perspectives

Some Perspectives

Perspectives (non-exhaustive list)

Improve extraction towards Scheme, consider also typed
racket.

Consider Common Lisp or Scheme programs with assignment,
in a Why3 plug-in.

Program proving and synthesis with the Coq proof assistant

Conclusion and Perspectives

Some Links

Some links

Documentation and download: coq.inria.fr

Static Analysis and Certified Compiler:

frama-c.com/
compcert.inria.fr/
compcert.inria.fr/verasco/

Books:

Interactive Theorem Proving and Program Development
www.labri.fr/∼casteran/CoqArt
Software Foundations: cis.upenn.edu/∼bcpierce/sf
Certified Programming with Dependent Types:
adam.chlipala.net/cpdt/

Mailing list : coq-club@inria.fr

http://coq.inria.fr
http://frama-c.com/
http://compcert.inria.fr/
http://compcert.inria.fr/verasco/
http://www.labri.fr/~casteran/CoqArt
https://www.cis.upenn.edu/~bcpierce/sf
http://adam.chlipala.net/cpdt/

	What is Coq?
	Examples in Functional Programming
	Coq as a programming language
	Propositions, predicates, etc.
	Interactive proofs
	A case study

	What about non purely functional languages?
	An example with Frama-C

	Conclusion and Perspectives
	Should we trust a Coq-certified software ?
	Interactive Theorem/Program Proving
	Some Perspectives
	Some Links

